|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Configuration base class and utilities.""" |
|
|
|
|
|
import copy |
|
import json |
|
import os |
|
import re |
|
import warnings |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
from packaging import version |
|
|
|
from . import __version__ |
|
from .dynamic_module_utils import custom_object_save |
|
from .utils import ( |
|
CONFIG_NAME, |
|
PushToHubMixin, |
|
add_model_info_to_auto_map, |
|
cached_file, |
|
copy_func, |
|
download_url, |
|
extract_commit_hash, |
|
is_remote_url, |
|
is_torch_available, |
|
logging, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_re_configuration_file = re.compile(r"config\.(.*)\.json") |
|
|
|
|
|
class PretrainedConfig(PushToHubMixin): |
|
|
|
r""" |
|
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as |
|
methods for loading/downloading/saving configurations. |
|
|
|
<Tip> |
|
|
|
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to |
|
initialize a model does **not** load the model weights. It only affects the model's configuration. |
|
|
|
</Tip> |
|
|
|
Class attributes (overridden by derived classes): |
|
|
|
- **model_type** (`str`) -- An identifier for the model type, serialized into the JSON file, and used to recreate |
|
the correct object in [`~transformers.AutoConfig`]. |
|
- **is_composition** (`bool`) -- Whether the config class is composed of multiple sub-configs. In this case the |
|
config has to be initialized from two or more configs of type [`~transformers.PretrainedConfig`] like: |
|
[`~transformers.EncoderDecoderConfig`] or [`~RagConfig`]. |
|
- **keys_to_ignore_at_inference** (`List[str]`) -- A list of keys to ignore by default when looking at dictionary |
|
outputs of the model during inference. |
|
- **attribute_map** (`Dict[str, str]`) -- A dict that maps model specific attribute names to the standardized |
|
naming of attributes. |
|
|
|
Common attributes (present in all subclasses): |
|
|
|
- **vocab_size** (`int`) -- The number of tokens in the vocabulary, which is also the first dimension of the |
|
embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT). |
|
- **hidden_size** (`int`) -- The hidden size of the model. |
|
- **num_attention_heads** (`int`) -- The number of attention heads used in the multi-head attention layers of the |
|
model. |
|
- **num_hidden_layers** (`int`) -- The number of blocks in the model. |
|
|
|
Arg: |
|
name_or_path (`str`, *optional*, defaults to `""`): |
|
Store the string that was passed to [`PreTrainedModel.from_pretrained`] or |
|
[`TFPreTrainedModel.from_pretrained`] as `pretrained_model_name_or_path` if the configuration was created |
|
with such a method. |
|
output_hidden_states (`bool`, *optional*, defaults to `False`): |
|
Whether or not the model should return all hidden-states. |
|
output_attentions (`bool`, *optional*, defaults to `False`): |
|
Whether or not the model should returns all attentions. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return a [`~transformers.utils.ModelOutput`] instead of a plain tuple. |
|
is_encoder_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether the model is used as an encoder/decoder or not. |
|
is_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether the model is used as decoder or not (in which case it's used as an encoder). |
|
cross_attention_hidden_size** (`bool`, *optional*): |
|
The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder |
|
setting and the cross-attention hidden dimension differs from `self.config.hidden_size`. |
|
add_cross_attention (`bool`, *optional*, defaults to `False`): |
|
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models |
|
that can be used as decoder models within the [`EncoderDecoderModel`] class, which consists of all models |
|
in `AUTO_MODELS_FOR_CAUSAL_LM`. |
|
tie_encoder_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder |
|
and decoder model to have the exact same parameter names. |
|
prune_heads (`Dict[int, List[int]]`, *optional*, defaults to `{}`): |
|
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of |
|
heads to prune in said layer. |
|
|
|
For instance `{1: [0, 2], 2: [2, 3]}` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. |
|
chunk_size_feed_forward (`int`, *optional*, defaults to `0`): |
|
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of `0` means that |
|
the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes `n` < |
|
sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed |
|
Forward Chunking work?](../glossary.html#feed-forward-chunking). |
|
|
|
> Parameters for sequence generation |
|
|
|
max_length (`int`, *optional*, defaults to 20): |
|
Maximum length that will be used by default in the `generate` method of the model. |
|
min_length (`int`, *optional*, defaults to 0): |
|
Minimum length that will be used by default in the `generate` method of the model. |
|
do_sample (`bool`, *optional*, defaults to `False`): |
|
Flag that will be used by default in the `generate` method of the model. Whether or not to use sampling ; |
|
use greedy decoding otherwise. |
|
early_stopping (`bool`, *optional*, defaults to `False`): |
|
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search |
|
when at least `num_beams` sentences are finished per batch or not. |
|
num_beams (`int`, *optional*, defaults to 1): |
|
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means |
|
no beam search. |
|
num_beam_groups (`int`, *optional*, defaults to 1): |
|
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams |
|
that will be used by default in the `generate` method of the model. 1 means no group beam search. |
|
diversity_penalty (`float`, *optional*, defaults to 0.0): |
|
Value to control diversity for group beam search. that will be used by default in the `generate` method of |
|
the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs. |
|
temperature (`float`, *optional*, defaults to 1.0): |
|
The value used to module the next token probabilities that will be used by default in the `generate` method |
|
of the model. Must be strictly positive. |
|
top_k (`int`, *optional*, defaults to 50): |
|
Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in |
|
the `generate` method of the model. |
|
top_p (`float`, *optional*, defaults to 1): |
|
Value that will be used by default in the `generate` method of the model for `top_p`. If set to float < 1, |
|
only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. |
|
typical_p (`float`, *optional*, defaults to 1): |
|
Local typicality measures how similar the conditional probability of predicting a target token next is to |
|
the expected conditional probability of predicting a random token next, given the partial text already |
|
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that |
|
add up to `typical_p` or higher are kept for generation. See [this |
|
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details. |
|
repetition_penalty (`float`, *optional*, defaults to 1): |
|
Parameter for repetition penalty that will be used by default in the `generate` method of the model. 1.0 |
|
means no penalty. |
|
length_penalty (`float`, *optional*, defaults to 1): |
|
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to |
|
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log |
|
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while |
|
`length_penalty` < 0.0 encourages shorter sequences. |
|
no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by default in the |
|
`generate` method of the model for `no_repeat_ngram_size`. If set to int > 0, all ngrams of that size can |
|
only occur once. |
|
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by |
|
default in the `generate` method of the model for `encoder_no_repeat_ngram_size`. If set to int > 0, all |
|
ngrams of that size that occur in the `encoder_input_ids` cannot occur in the `decoder_input_ids`. |
|
bad_words_ids (`List[int]`, *optional*): |
|
List of token ids that are not allowed to be generated that will be used by default in the `generate` |
|
method of the model. In order to get the tokens of the words that should not appear in the generated text, |
|
use `tokenizer.encode(bad_word, add_prefix_space=True)`. |
|
num_return_sequences (`int`, *optional*, defaults to 1): |
|
Number of independently computed returned sequences for each element in the batch that will be used by |
|
default in the `generate` method of the model. |
|
output_scores (`bool`, *optional*, defaults to `False`): |
|
Whether the model should return the logits when used for generation. |
|
return_dict_in_generate (`bool`, *optional*, defaults to `False`): |
|
Whether the model should return a [`~transformers.utils.ModelOutput`] instead of a `torch.LongTensor`. |
|
forced_bos_token_id (`int`, *optional*): |
|
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for |
|
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target |
|
language token. |
|
forced_eos_token_id (`int`, *optional*): |
|
The id of the token to force as the last generated token when `max_length` is reached. |
|
remove_invalid_values (`bool`, *optional*): |
|
Whether to remove possible _nan_ and _inf_ outputs of the model to prevent the generation method to crash. |
|
Note that using `remove_invalid_values` can slow down generation. |
|
|
|
> Parameters for fine-tuning tasks |
|
|
|
architectures (`List[str]`, *optional*): |
|
Model architectures that can be used with the model pretrained weights. |
|
finetuning_task (`str`, *optional*): |
|
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow |
|
or PyTorch) checkpoint. |
|
id2label (`Dict[int, str]`, *optional*): |
|
A map from index (for instance prediction index, or target index) to label. |
|
label2id (`Dict[str, int]`, *optional*): A map from label to index for the model. |
|
num_labels (`int`, *optional*): |
|
Number of labels to use in the last layer added to the model, typically for a classification task. |
|
task_specific_params (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments to store for the current task. |
|
problem_type (`str`, *optional*): |
|
Problem type for `XxxForSequenceClassification` models. Can be one of `"regression"`, |
|
`"single_label_classification"` or `"multi_label_classification"`. |
|
|
|
> Parameters linked to the tokenizer |
|
|
|
tokenizer_class (`str`, *optional*): |
|
The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the |
|
model by default). |
|
prefix (`str`, *optional*): |
|
A specific prompt that should be added at the beginning of each text before calling the model. |
|
bos_token_id (`int`, *optional*): The id of the _beginning-of-stream_ token. |
|
pad_token_id (`int`, *optional*): The id of the _padding_ token. |
|
eos_token_id (`int`, *optional*): The id of the _end-of-stream_ token. |
|
decoder_start_token_id (`int`, *optional*): |
|
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. |
|
sep_token_id (`int`, *optional*): The id of the _separation_ token. |
|
|
|
> PyTorch specific parameters |
|
|
|
torchscript (`bool`, *optional*, defaults to `False`): |
|
Whether or not the model should be used with Torchscript. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `True`): |
|
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the |
|
model has a output word embedding layer. |
|
torch_dtype (`str`, *optional*): |
|
The `dtype` of the weights. This attribute can be used to initialize the model to a non-default `dtype` |
|
(which is normally `float32`) and thus allow for optimal storage allocation. For example, if the saved |
|
model is `float16`, ideally we want to load it back using the minimal amount of memory needed to load |
|
`float16` weights. Since the config object is stored in plain text, this attribute contains just the |
|
floating type string without the `torch.` prefix. For example, for `torch.float16` ``torch_dtype` is the |
|
`"float16"` string. |
|
|
|
This attribute is currently not being used during model loading time, but this may change in the future |
|
versions. But we can already start preparing for the future by saving the dtype with save_pretrained. |
|
|
|
> TensorFlow specific parameters |
|
|
|
use_bfloat16 (`bool`, *optional*, defaults to `False`): |
|
Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models). |
|
tf_legacy_loss (`bool`, *optional*, defaults to `False`): |
|
Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may |
|
not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers |
|
v5. |
|
""" |
|
model_type: str = "" |
|
is_composition: bool = False |
|
attribute_map: Dict[str, str] = {} |
|
_auto_class: Optional[str] = None |
|
|
|
def __setattr__(self, key, value): |
|
if key in super().__getattribute__("attribute_map"): |
|
key = super().__getattribute__("attribute_map")[key] |
|
super().__setattr__(key, value) |
|
|
|
def __getattribute__(self, key): |
|
if key != "attribute_map" and key in super().__getattribute__("attribute_map"): |
|
key = super().__getattribute__("attribute_map")[key] |
|
return super().__getattribute__(key) |
|
|
|
def __init__(self, **kwargs): |
|
|
|
self.return_dict = kwargs.pop("return_dict", True) |
|
self.output_hidden_states = kwargs.pop("output_hidden_states", False) |
|
self.output_attentions = kwargs.pop("output_attentions", False) |
|
self.torchscript = kwargs.pop("torchscript", False) |
|
self.torch_dtype = kwargs.pop("torch_dtype", None) |
|
self.use_bfloat16 = kwargs.pop("use_bfloat16", False) |
|
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False) |
|
self.pruned_heads = kwargs.pop("pruned_heads", {}) |
|
self.tie_word_embeddings = kwargs.pop( |
|
"tie_word_embeddings", True |
|
) |
|
|
|
|
|
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False) |
|
self.is_decoder = kwargs.pop("is_decoder", False) |
|
self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None) |
|
self.add_cross_attention = kwargs.pop("add_cross_attention", False) |
|
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False) |
|
|
|
|
|
self.max_length = kwargs.pop("max_length", 20) |
|
self.min_length = kwargs.pop("min_length", 0) |
|
self.do_sample = kwargs.pop("do_sample", False) |
|
self.early_stopping = kwargs.pop("early_stopping", False) |
|
self.num_beams = kwargs.pop("num_beams", 1) |
|
self.num_beam_groups = kwargs.pop("num_beam_groups", 1) |
|
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0) |
|
self.temperature = kwargs.pop("temperature", 1.0) |
|
self.top_k = kwargs.pop("top_k", 50) |
|
self.top_p = kwargs.pop("top_p", 1.0) |
|
self.typical_p = kwargs.pop("typical_p", 1.0) |
|
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) |
|
self.length_penalty = kwargs.pop("length_penalty", 1.0) |
|
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0) |
|
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0) |
|
self.bad_words_ids = kwargs.pop("bad_words_ids", None) |
|
self.num_return_sequences = kwargs.pop("num_return_sequences", 1) |
|
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0) |
|
self.output_scores = kwargs.pop("output_scores", False) |
|
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False) |
|
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None) |
|
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None) |
|
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False) |
|
self.exponential_decay_length_penalty = kwargs.pop("exponential_decay_length_penalty", None) |
|
self.suppress_tokens = kwargs.pop("suppress_tokens", None) |
|
self.begin_suppress_tokens = kwargs.pop("begin_suppress_tokens", None) |
|
|
|
|
|
self.architectures = kwargs.pop("architectures", None) |
|
self.finetuning_task = kwargs.pop("finetuning_task", None) |
|
self.id2label = kwargs.pop("id2label", None) |
|
self.label2id = kwargs.pop("label2id", None) |
|
if self.label2id is not None and not isinstance(self.label2id, dict): |
|
raise ValueError("Argument label2id should be a dictionary.") |
|
if self.id2label is not None: |
|
if not isinstance(self.id2label, dict): |
|
raise ValueError("Argument id2label should be a dictionary.") |
|
num_labels = kwargs.pop("num_labels", None) |
|
if num_labels is not None and len(self.id2label) != num_labels: |
|
logger.warning( |
|
f"You passed along `num_labels={num_labels}` with an incompatible id to label map: " |
|
f"{self.id2label}. The number of labels wil be overwritten to {self.num_labels}." |
|
) |
|
self.id2label = {int(key): value for key, value in self.id2label.items()} |
|
|
|
else: |
|
self.num_labels = kwargs.pop("num_labels", 2) |
|
|
|
if self.torch_dtype is not None and isinstance(self.torch_dtype, str): |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
self.torch_dtype = getattr(torch, self.torch_dtype) |
|
|
|
|
|
self.tokenizer_class = kwargs.pop("tokenizer_class", None) |
|
self.prefix = kwargs.pop("prefix", None) |
|
self.bos_token_id = kwargs.pop("bos_token_id", None) |
|
self.pad_token_id = kwargs.pop("pad_token_id", None) |
|
self.eos_token_id = kwargs.pop("eos_token_id", None) |
|
self.sep_token_id = kwargs.pop("sep_token_id", None) |
|
|
|
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None) |
|
|
|
|
|
self.task_specific_params = kwargs.pop("task_specific_params", None) |
|
|
|
|
|
self.problem_type = kwargs.pop("problem_type", None) |
|
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification") |
|
if self.problem_type is not None and self.problem_type not in allowed_problem_types: |
|
raise ValueError( |
|
f"The config parameter `problem_type` was not understood: received {self.problem_type} " |
|
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid." |
|
) |
|
|
|
|
|
if kwargs.pop("xla_device", None) is not None: |
|
logger.warning( |
|
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can " |
|
"safely remove it from your `config.json` file." |
|
) |
|
|
|
|
|
self._name_or_path = str(kwargs.pop("name_or_path", "")) |
|
|
|
self._commit_hash = kwargs.pop("_commit_hash", None) |
|
|
|
|
|
self.transformers_version = kwargs.pop("transformers_version", None) |
|
|
|
|
|
if kwargs.get("gradient_checkpointing", False): |
|
warnings.warn( |
|
"Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 " |
|
"Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the " |
|
"`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`." |
|
) |
|
|
|
|
|
for key, value in kwargs.items(): |
|
try: |
|
setattr(self, key, value) |
|
except AttributeError as err: |
|
logger.error(f"Can't set {key} with value {value} for {self}") |
|
raise err |
|
|
|
@property |
|
def name_or_path(self) -> str: |
|
return getattr(self, "_name_or_path", None) |
|
|
|
@name_or_path.setter |
|
def name_or_path(self, value): |
|
self._name_or_path = str(value) |
|
|
|
@property |
|
def use_return_dict(self) -> bool: |
|
""" |
|
`bool`: Whether or not return [`~utils.ModelOutput`] instead of tuples. |
|
""" |
|
|
|
return self.return_dict and not self.torchscript |
|
|
|
@property |
|
def num_labels(self) -> int: |
|
""" |
|
`int`: The number of labels for classification models. |
|
""" |
|
return len(self.id2label) |
|
|
|
@num_labels.setter |
|
def num_labels(self, num_labels: int): |
|
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels: |
|
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)} |
|
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys())) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the |
|
[`~PretrainedConfig.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file will be saved (will be created if it does not exist). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
self._set_token_in_kwargs(kwargs) |
|
|
|
if os.path.isfile(save_directory): |
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = self._create_repo(repo_id, **kwargs) |
|
files_timestamps = self._get_files_timestamps(save_directory) |
|
|
|
|
|
|
|
if self._auto_class is not None: |
|
custom_object_save(self, save_directory, config=self) |
|
|
|
|
|
output_config_file = os.path.join(save_directory, CONFIG_NAME) |
|
|
|
self.to_json_file(output_config_file, use_diff=True) |
|
logger.info(f"Configuration saved in {output_config_file}") |
|
|
|
if push_to_hub: |
|
self._upload_modified_files( |
|
save_directory, |
|
repo_id, |
|
files_timestamps, |
|
commit_message=commit_message, |
|
token=kwargs.get("token"), |
|
) |
|
|
|
@staticmethod |
|
def _set_token_in_kwargs(kwargs, token=None): |
|
"""Temporary method to deal with `token` and `use_auth_token`. |
|
|
|
This method is to avoid apply the same changes in all model config classes that overwrite `from_pretrained`. |
|
|
|
Need to clean up `use_auth_token` in a follow PR. |
|
""" |
|
|
|
if token is None: |
|
token = kwargs.pop("token", None) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
|
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
if token is not None: |
|
kwargs["token"] = token |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
**kwargs, |
|
) -> "PretrainedConfig": |
|
r""" |
|
Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on |
|
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or |
|
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. |
|
- a path to a *directory* containing a configuration file saved using the |
|
[`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`. |
|
- a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the configuration files and override the cached versions if |
|
they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file |
|
exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or `bool`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use |
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
|
|
<Tip> |
|
|
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". |
|
|
|
</Tip> |
|
|
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
If `False`, then this function returns just the final configuration object. |
|
|
|
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a |
|
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the |
|
part of `kwargs` which has not been used to update `config` and is otherwise ignored. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
The values in kwargs of any keys which are configuration attributes will be used to override the loaded |
|
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled |
|
by the `return_unused_kwargs` keyword parameter. |
|
|
|
Returns: |
|
[`PretrainedConfig`]: The configuration object instantiated from this pretrained model. |
|
|
|
Examples: |
|
|
|
```python |
|
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a |
|
# derived class: BertConfig |
|
config = BertConfig.from_pretrained( |
|
"bert-base-uncased" |
|
) # Download configuration from huggingface.co and cache. |
|
config = BertConfig.from_pretrained( |
|
"./test/saved_model/" |
|
) # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')* |
|
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json") |
|
config = BertConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False) |
|
assert config.output_attentions == True |
|
config, unused_kwargs = BertConfig.from_pretrained( |
|
"bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True |
|
) |
|
assert config.output_attentions == True |
|
assert unused_kwargs == {"foo": False} |
|
```""" |
|
kwargs["cache_dir"] = cache_dir |
|
kwargs["force_download"] = force_download |
|
kwargs["local_files_only"] = local_files_only |
|
kwargs["revision"] = revision |
|
|
|
cls._set_token_in_kwargs(kwargs, token) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
@classmethod |
|
def get_config_dict( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
""" |
|
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a |
|
[`PretrainedConfig`] using `from_dict`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. |
|
|
|
Returns: |
|
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object. |
|
|
|
""" |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
original_kwargs = copy.deepcopy(kwargs) |
|
|
|
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
if "_commit_hash" in config_dict: |
|
original_kwargs["_commit_hash"] = config_dict["_commit_hash"] |
|
|
|
|
|
if "configuration_files" in config_dict: |
|
configuration_file = get_configuration_file(config_dict["configuration_files"]) |
|
config_dict, kwargs = cls._get_config_dict( |
|
pretrained_model_name_or_path, _configuration_file=configuration_file, **original_kwargs |
|
) |
|
|
|
return config_dict, kwargs |
|
|
|
@classmethod |
|
def _get_config_dict( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
trust_remote_code = kwargs.pop("trust_remote_code", None) |
|
subfolder = kwargs.pop("subfolder", "") |
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
from_auto_class = kwargs.pop("_from_auto", False) |
|
commit_hash = kwargs.pop("_commit_hash", None) |
|
|
|
if trust_remote_code is True: |
|
logger.warning( |
|
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" |
|
" ignored." |
|
) |
|
|
|
user_agent = {"file_type": "config", "from_auto_class": from_auto_class} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
|
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
if os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)): |
|
|
|
resolved_config_file = pretrained_model_name_or_path |
|
is_local = True |
|
elif is_remote_url(pretrained_model_name_or_path): |
|
configuration_file = pretrained_model_name_or_path |
|
resolved_config_file = download_url(pretrained_model_name_or_path) |
|
else: |
|
configuration_file = kwargs.pop("_configuration_file", CONFIG_NAME) |
|
|
|
try: |
|
|
|
resolved_config_file = cached_file( |
|
pretrained_model_name_or_path, |
|
configuration_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_commit_hash=commit_hash, |
|
) |
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash) |
|
except EnvironmentError: |
|
|
|
|
|
raise |
|
except Exception: |
|
|
|
raise EnvironmentError( |
|
f"Can't load the configuration of '{pretrained_model_name_or_path}'. If you were trying to load it" |
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same" |
|
f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory" |
|
f" containing a {configuration_file} file" |
|
) |
|
|
|
try: |
|
|
|
config_dict = cls._dict_from_json_file(resolved_config_file) |
|
config_dict["_commit_hash"] = commit_hash |
|
except (json.JSONDecodeError, UnicodeDecodeError): |
|
raise EnvironmentError( |
|
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file." |
|
) |
|
|
|
if is_local: |
|
logger.info(f"loading configuration file {resolved_config_file}") |
|
else: |
|
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}") |
|
|
|
if "auto_map" in config_dict and not is_local: |
|
config_dict["auto_map"] = add_model_info_to_auto_map( |
|
config_dict["auto_map"], pretrained_model_name_or_path |
|
) |
|
return config_dict, kwargs |
|
|
|
@classmethod |
|
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig": |
|
""" |
|
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters. |
|
|
|
Args: |
|
config_dict (`Dict[str, Any]`): |
|
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be |
|
retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method. |
|
kwargs (`Dict[str, Any]`): |
|
Additional parameters from which to initialize the configuration object. |
|
|
|
Returns: |
|
[`PretrainedConfig`]: The configuration object instantiated from those parameters. |
|
""" |
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) |
|
|
|
|
|
kwargs.pop("_from_auto", None) |
|
kwargs.pop("_from_pipeline", None) |
|
|
|
if "_commit_hash" in kwargs and "_commit_hash" in config_dict: |
|
kwargs["_commit_hash"] = config_dict["_commit_hash"] |
|
|
|
config = cls(**config_dict) |
|
|
|
if hasattr(config, "pruned_heads"): |
|
config.pruned_heads = {int(key): value for key, value in config.pruned_heads.items()} |
|
|
|
|
|
if "num_labels" in kwargs and "id2label" in kwargs: |
|
num_labels = kwargs["num_labels"] |
|
id2label = kwargs["id2label"] if kwargs["id2label"] is not None else [] |
|
if len(id2label) != num_labels: |
|
raise ValueError( |
|
f"You passed along `num_labels={num_labels }` with an incompatible id to label map: " |
|
f"{kwargs['id2label']}. Since those arguments are inconsistent with each other, you should remove " |
|
"one of them." |
|
) |
|
to_remove = [] |
|
for key, value in kwargs.items(): |
|
if hasattr(config, key): |
|
current_attr = getattr(config, key) |
|
|
|
if isinstance(current_attr, PretrainedConfig) and isinstance(value, dict): |
|
value = current_attr.__class__(**value) |
|
setattr(config, key, value) |
|
if key != "torch_dtype": |
|
to_remove.append(key) |
|
for key in to_remove: |
|
kwargs.pop(key, None) |
|
|
|
logger.info(f"Model config {config}") |
|
if return_unused_kwargs: |
|
return config, kwargs |
|
else: |
|
return config |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig": |
|
""" |
|
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters. |
|
|
|
Args: |
|
json_file (`str` or `os.PathLike`): |
|
Path to the JSON file containing the parameters. |
|
|
|
Returns: |
|
[`PretrainedConfig`]: The configuration object instantiated from that JSON file. |
|
|
|
""" |
|
config_dict = cls._dict_from_json_file(json_file) |
|
return cls(**config_dict) |
|
|
|
@classmethod |
|
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
def __eq__(self, other): |
|
return isinstance(other, PretrainedConfig) and (self.__dict__ == other.__dict__) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__} {self.to_json_string()}" |
|
|
|
def to_diff_dict(self) -> Dict[str, Any]: |
|
""" |
|
Removes all attributes from config which correspond to the default config attributes for better readability and |
|
serializes to a Python dictionary. |
|
|
|
Returns: |
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
config_dict = self.to_dict() |
|
|
|
|
|
default_config_dict = PretrainedConfig().to_dict() |
|
|
|
|
|
class_config_dict = self.__class__().to_dict() if not self.is_composition else {} |
|
|
|
serializable_config_dict = {} |
|
|
|
|
|
for key, value in config_dict.items(): |
|
if ( |
|
isinstance(getattr(self, key, None), PretrainedConfig) |
|
and key in class_config_dict |
|
and isinstance(class_config_dict[key], dict) |
|
): |
|
|
|
diff = recursive_diff_dict(value, class_config_dict[key], config_obj=getattr(self, key, None)) |
|
if "model_type" in value: |
|
|
|
diff["model_type"] = value["model_type"] |
|
if len(diff) > 0: |
|
serializable_config_dict[key] = diff |
|
elif ( |
|
key not in default_config_dict |
|
or key == "transformers_version" |
|
or value != default_config_dict[key] |
|
or (key in class_config_dict and value != class_config_dict[key]) |
|
): |
|
serializable_config_dict[key] = value |
|
|
|
if hasattr(self, "quantization_config"): |
|
serializable_config_dict["quantization_config"] = ( |
|
self.quantization_config.to_dict() |
|
if not isinstance(self.quantization_config, dict) |
|
else self.quantization_config |
|
) |
|
|
|
self.dict_torch_dtype_to_str(serializable_config_dict) |
|
|
|
if "_flash_attn_2_enabled" in serializable_config_dict: |
|
del serializable_config_dict["_flash_attn_2_enabled"] |
|
|
|
return serializable_config_dict |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
""" |
|
Serializes this instance to a Python dictionary. |
|
|
|
Returns: |
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
if hasattr(self.__class__, "model_type"): |
|
output["model_type"] = self.__class__.model_type |
|
if "_auto_class" in output: |
|
del output["_auto_class"] |
|
if "_commit_hash" in output: |
|
del output["_commit_hash"] |
|
if "_flash_attn_2_enabled" in output: |
|
del output["_flash_attn_2_enabled"] |
|
|
|
|
|
output["transformers_version"] = __version__ |
|
|
|
for key, value in output.items(): |
|
|
|
if isinstance(value, PretrainedConfig): |
|
value = value.to_dict() |
|
del value["transformers_version"] |
|
|
|
output[key] = value |
|
|
|
if hasattr(self, "quantization_config"): |
|
output["quantization_config"] = ( |
|
self.quantization_config.to_dict() |
|
if not isinstance(self.quantization_config, dict) |
|
else self.quantization_config |
|
) |
|
|
|
self.dict_torch_dtype_to_str(output) |
|
|
|
return output |
|
|
|
def to_json_string(self, use_diff: bool = True) -> str: |
|
""" |
|
Serializes this instance to a JSON string. |
|
|
|
Args: |
|
use_diff (`bool`, *optional*, defaults to `True`): |
|
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` |
|
is serialized to JSON string. |
|
|
|
Returns: |
|
`str`: String containing all the attributes that make up this configuration instance in JSON format. |
|
""" |
|
if use_diff is True: |
|
config_dict = self.to_diff_dict() |
|
else: |
|
config_dict = self.to_dict() |
|
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True): |
|
""" |
|
Save this instance to a JSON file. |
|
|
|
Args: |
|
json_file_path (`str` or `os.PathLike`): |
|
Path to the JSON file in which this configuration instance's parameters will be saved. |
|
use_diff (`bool`, *optional*, defaults to `True`): |
|
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` |
|
is serialized to JSON file. |
|
""" |
|
with open(json_file_path, "w", encoding="utf-8") as writer: |
|
writer.write(self.to_json_string(use_diff=use_diff)) |
|
|
|
def update(self, config_dict: Dict[str, Any]): |
|
""" |
|
Updates attributes of this class with attributes from `config_dict`. |
|
|
|
Args: |
|
config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class. |
|
""" |
|
for key, value in config_dict.items(): |
|
setattr(self, key, value) |
|
|
|
def update_from_string(self, update_str: str): |
|
""" |
|
Updates attributes of this class with attributes from `update_str`. |
|
|
|
The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example: |
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" |
|
|
|
The keys to change have to already exist in the config object. |
|
|
|
Args: |
|
update_str (`str`): String with attributes that should be updated for this class. |
|
|
|
""" |
|
|
|
d = dict(x.split("=") for x in update_str.split(",")) |
|
for k, v in d.items(): |
|
if not hasattr(self, k): |
|
raise ValueError(f"key {k} isn't in the original config dict") |
|
|
|
old_v = getattr(self, k) |
|
if isinstance(old_v, bool): |
|
if v.lower() in ["true", "1", "y", "yes"]: |
|
v = True |
|
elif v.lower() in ["false", "0", "n", "no"]: |
|
v = False |
|
else: |
|
raise ValueError(f"can't derive true or false from {v} (key {k})") |
|
elif isinstance(old_v, int): |
|
v = int(v) |
|
elif isinstance(old_v, float): |
|
v = float(v) |
|
elif not isinstance(old_v, str): |
|
raise ValueError( |
|
f"You can only update int, float, bool or string values in the config, got {v} for key {k}" |
|
) |
|
|
|
setattr(self, k, v) |
|
|
|
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None: |
|
""" |
|
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None, |
|
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"* |
|
string, which can then be stored in the json format. |
|
""" |
|
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str): |
|
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1] |
|
for value in d.values(): |
|
if isinstance(value, dict): |
|
self.dict_torch_dtype_to_str(value) |
|
|
|
@classmethod |
|
def register_for_auto_class(cls, auto_class="AutoConfig"): |
|
""" |
|
Register this class with a given auto class. This should only be used for custom configurations as the ones in |
|
the library are already mapped with `AutoConfig`. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is experimental and may have some slight breaking changes in the next releases. |
|
|
|
</Tip> |
|
|
|
Args: |
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`): |
|
The auto class to register this new configuration with. |
|
""" |
|
if not isinstance(auto_class, str): |
|
auto_class = auto_class.__name__ |
|
|
|
import transformers.models.auto as auto_module |
|
|
|
if not hasattr(auto_module, auto_class): |
|
raise ValueError(f"{auto_class} is not a valid auto class.") |
|
|
|
cls._auto_class = auto_class |
|
|
|
|
|
def get_configuration_file(configuration_files: List[str]) -> str: |
|
""" |
|
Get the configuration file to use for this version of transformers. |
|
|
|
Args: |
|
configuration_files (`List[str]`): The list of available configuration files. |
|
|
|
Returns: |
|
`str`: The configuration file to use. |
|
""" |
|
configuration_files_map = {} |
|
for file_name in configuration_files: |
|
search = _re_configuration_file.search(file_name) |
|
if search is not None: |
|
v = search.groups()[0] |
|
configuration_files_map[v] = file_name |
|
available_versions = sorted(configuration_files_map.keys()) |
|
|
|
|
|
configuration_file = CONFIG_NAME |
|
transformers_version = version.parse(__version__) |
|
for v in available_versions: |
|
if version.parse(v) <= transformers_version: |
|
configuration_file = configuration_files_map[v] |
|
else: |
|
|
|
break |
|
|
|
return configuration_file |
|
|
|
|
|
def recursive_diff_dict(dict_a, dict_b, config_obj=None): |
|
""" |
|
Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the |
|
values from `dict_a` that are different from values in `dict_b`. |
|
""" |
|
diff = {} |
|
default = config_obj.__class__().to_dict() if config_obj is not None else {} |
|
for key, value in dict_a.items(): |
|
obj_value = getattr(config_obj, str(key), None) |
|
if isinstance(obj_value, PretrainedConfig) and key in dict_b and isinstance(dict_b[key], dict): |
|
diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value) |
|
if len(diff_value) > 0: |
|
diff[key] = diff_value |
|
elif key not in dict_b or value != dict_b[key] or key not in default or value != default[key]: |
|
diff[key] = value |
|
return diff |
|
|
|
|
|
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub) |
|
if PretrainedConfig.push_to_hub.__doc__ is not None: |
|
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format( |
|
object="config", object_class="AutoConfig", object_files="configuration file" |
|
) |
|
|