File size: 6,501 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import UserDict
from typing import Union

import numpy as np
import requests

from ..utils import (
    add_end_docstrings,
    logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline


logger = logging.get_logger(__name__)


@add_end_docstrings(PIPELINE_INIT_ARGS)
class ZeroShotAudioClassificationPipeline(Pipeline):
    """
    Zero shot audio classification pipeline using `ClapModel`. This pipeline predicts the class of an audio when you
    provide an audio and a set of `candidate_labels`.

    Example:
    ```python
    >>> from transformers import pipeline
    >>> from datasets import load_dataset

    >>> dataset = load_dataset("ashraq/esc50")
    >>> audio = next(iter(dataset["train"]["audio"]))["array"]
    >>> classifier = pipeline(task="zero-shot-audio-classification", model="laion/clap-htsat-unfused")
    >>> classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
    [{'score': 0.9996, 'label': 'Sound of a dog'}, {'score': 0.0004, 'label': 'Sound of vaccum cleaner'}]
    ```


    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This audio
    classification pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"zero-shot-audio-classification"`. See the list of available models on
    [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-audio-classification).
    """

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        if self.framework != "pt":
            raise ValueError(f"The {self.__class__} is only available in PyTorch.")
        # No specific FOR_XXX available yet

    def __call__(self, audios: Union[np.ndarray, bytes, str], **kwargs):
        """
        Assign labels to the audio(s) passed as inputs.

        Args:
            audios (`str`, `List[str]`, `np.array` or `List[np.array]`):
                The pipeline handles three types of inputs:
                - A string containing a http link pointing to an audio
                - A string containing a local path to an audio
                - An audio loaded in numpy
            candidate_labels (`List[str]`):
                The candidate labels for this audio
            hypothesis_template (`str`, *optional*, defaults to `"This is a sound of {}"`):
                The sentence used in cunjunction with *candidate_labels* to attempt the audio classification by
                replacing the placeholder with the candidate_labels. Then likelihood is estimated by using
                logits_per_audio
        Return:
            A list of dictionaries containing result, one dictionary per proposed label. The dictionaries contain the
            following keys:
            - **label** (`str`) -- The label identified by the model. It is one of the suggested `candidate_label`.
            - **score** (`float`) -- The score attributed by the model for that label (between 0 and 1).
        """
        return super().__call__(audios, **kwargs)

    def _sanitize_parameters(self, **kwargs):
        preprocess_params = {}
        if "candidate_labels" in kwargs:
            preprocess_params["candidate_labels"] = kwargs["candidate_labels"]
        if "hypothesis_template" in kwargs:
            preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"]

        return preprocess_params, {}, {}

    def preprocess(self, audio, candidate_labels=None, hypothesis_template="This is a sound of {}."):
        if isinstance(audio, str):
            if audio.startswith("http://") or audio.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                audio = requests.get(audio).content
            else:
                with open(audio, "rb") as f:
                    audio = f.read()

        if isinstance(audio, bytes):
            audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate)

        if not isinstance(audio, np.ndarray):
            raise ValueError("We expect a numpy ndarray as input")
        if len(audio.shape) != 1:
            raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline")

        inputs = self.feature_extractor(
            [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
        )
        inputs["candidate_labels"] = candidate_labels
        sequences = [hypothesis_template.format(x) for x in candidate_labels]
        text_inputs = self.tokenizer(sequences, return_tensors=self.framework, padding=True)
        inputs["text_inputs"] = [text_inputs]
        return inputs

    def _forward(self, model_inputs):
        candidate_labels = model_inputs.pop("candidate_labels")
        text_inputs = model_inputs.pop("text_inputs")
        if isinstance(text_inputs[0], UserDict):
            text_inputs = text_inputs[0]
        else:
            # Batching case.
            text_inputs = text_inputs[0][0]

        outputs = self.model(**text_inputs, **model_inputs)

        model_outputs = {
            "candidate_labels": candidate_labels,
            "logits": outputs.logits_per_audio,
        }
        return model_outputs

    def postprocess(self, model_outputs):
        candidate_labels = model_outputs.pop("candidate_labels")
        logits = model_outputs["logits"][0]

        if self.framework == "pt":
            probs = logits.softmax(dim=0)
            scores = probs.tolist()
        else:
            raise ValueError("`tf` framework not supported.")

        result = [
            {"score": score, "label": candidate_label}
            for score, candidate_label in sorted(zip(scores, candidate_labels), key=lambda x: -x[0])
        ]
        return result