File size: 54,435 Bytes
9231ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 |
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 CLIP model."""
from __future__ import annotations
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
# Public API
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/clip-vit-base-patch32",
# See all CLIP models at https://huggingface.co/models?filter=clip
]
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
return tf.math.reduce_mean(
tf.keras.metrics.sparse_categorical_crossentropy(
y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
)
)
def clip_loss(similarity: tf.Tensor) -> tf.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(tf.transpose(similarity))
return (caption_loss + image_loss) / 2.0
@dataclass
class TFCLIPOutput(ModelOutput):
"""
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPTextModel`].
image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`TFCLIPVisionModel`].
text_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
The output of the [`TFCLIPTextModel`].
vision_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
The output of the [`TFCLIPVisionModel`].
"""
loss: tf.Tensor | None = None
logits_per_image: tf.Tensor = None
logits_per_text: tf.Tensor = None
text_embeds: tf.Tensor = None
image_embeds: tf.Tensor = None
text_model_output: TFBaseModelOutputWithPooling = None
vision_model_output: TFBaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class TFCLIPVisionEmbeddings(tf.keras.layers.Layer):
def __init__(self, config: CLIPVisionConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.config = config
self.patch_embedding = tf.keras.layers.Conv2D(
filters=self.embed_dim,
kernel_size=self.patch_size,
strides=self.patch_size,
padding="valid",
data_format="channels_last",
use_bias=False,
kernel_initializer=get_initializer(self.config.initializer_range * self.config.initializer_factor),
name="patch_embedding",
)
def build(self, input_shape: tf.TensorShape = None):
factor = self.config.initializer_factor
self.class_embedding = self.add_weight(
shape=(self.embed_dim,),
initializer=get_initializer(self.embed_dim**-0.5 * factor),
trainable=True,
name="class_embedding",
)
with tf.name_scope("position_embedding"):
self.position_embedding = self.add_weight(
shape=(self.num_positions, self.embed_dim),
initializer=get_initializer(self.config.initializer_range * factor),
trainable=True,
name="embeddings",
)
super().build(input_shape)
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
"""`pixel_values` is expected to be of NCHW format."""
batch_size, num_channels, height, width = shape_list(pixel_values)
# When running on CPU, `tf.nn.conv2d` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
patch_embeds = self.patch_embedding(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
patch_embeds = tf.reshape(tensor=patch_embeds, shape=(batch_size, self.num_patches, -1))
# add the [CLS] token to the embedded patch tokens
class_embeds = tf.broadcast_to(self.class_embedding, shape=(batch_size, 1, self.embed_dim))
embeddings = tf.concat((class_embeds, patch_embeds), axis=1)
embeddings = embeddings + self.position_embedding
return embeddings
class TFCLIPTextEmbeddings(tf.keras.layers.Layer):
def __init__(self, config: CLIPTextConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.config = config
def build(self, input_shape: tf.TensorShape = None):
with tf.name_scope("token_embedding"):
self.weight = self.add_weight(
shape=(self.config.vocab_size, self.embed_dim),
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
trainable=True,
name="weight",
)
with tf.name_scope("position_embedding"):
self.position_embedding = self.add_weight(
shape=(self.config.max_position_embeddings, self.embed_dim),
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
trainable=True,
name="embeddings",
)
super().build(input_shape)
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
final_embeddings = inputs_embeds + position_embeds
return final_embeddings
class TFCLIPAttention(tf.keras.layers.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: CLIPConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = self.embed_dim // self.num_attention_heads
if self.attention_head_size * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_attention_heads})."
)
factor = config.initializer_factor
in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (self.embed_dim**-0.5) * factor
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.q_proj = tf.keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj"
)
self.k_proj = tf.keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj"
)
self.v_proj = tf.keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj"
)
self.dropout = tf.keras.layers.Dropout(rate=config.attention_dropout)
self.out_proj = tf.keras.layers.Dense(
units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj"
)
# copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
causal_attention_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
"""Input shape: Batch x Time x Channel"""
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.q_proj(inputs=hidden_states)
mixed_key_layer = self.k_proj(inputs=hidden_states)
mixed_value_layer = self.v_proj(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
# Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function)
attention_scores = tf.add(attention_scores, causal_attention_mask)
if attention_mask is not None:
# Apply the attention mask (precomputed for all layers in TFCLIPModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
_attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=_attention_probs, training=training)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, embed_dim)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim))
attention_output = self.out_proj(attention_output, training=training)
# In TFBert, attention weights are returned after dropout.
# However, in CLIP, they are returned before dropout.
outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,)
return outputs
class TFCLIPMLP(tf.keras.layers.Layer):
def __init__(self, config: CLIPConfig, **kwargs):
super().__init__(**kwargs)
self.activation_fn = get_tf_activation(config.hidden_act)
factor = config.initializer_factor
in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * config.hidden_size) ** -0.5 * factor
self.fc1 = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
)
self.fc2 = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.fc1(inputs=hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(inputs=hidden_states)
return hidden_states
class TFCLIPEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: CLIPConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.self_attn = TFCLIPAttention(config, name="self_attn")
self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
self.mlp = TFCLIPMLP(config, name="mlp")
self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
causal_attention_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
causal_attention_mask (`tf.Tensor`): causal attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`):
Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(inputs=hidden_states)
attention_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = attention_outputs[0]
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(inputs=hidden_states)
hidden_states = self.mlp(hidden_states=hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,) + attention_outputs[1:] # add attentions if we output them
return outputs
class TFCLIPEncoder(tf.keras.layers.Layer):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`TFCLIPEncoderLayer`].
Args:
config: CLIPConfig
"""
def __init__(self, config: CLIPConfig, **kwargs):
super().__init__(**kwargs)
self.layers = [TFCLIPEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
causal_attention_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class TFCLIPTextTransformer(tf.keras.layers.Layer):
def __init__(self, config: CLIPTextConfig, **kwargs):
super().__init__(**kwargs)
self.embeddings = TFCLIPTextEmbeddings(config, name="embeddings")
self.encoder = TFCLIPEncoder(config, name="encoder")
self.final_layer_norm = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="final_layer_norm"
)
# For `pooled_output` computation
self.eos_token_id = config.eos_token_id
def call(
self,
input_ids: TFModelInputType,
attention_mask: tf.Tensor,
position_ids: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
input_shape = shape_list(input_ids)
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
batch_size, seq_length = input_shape
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype)
# check attention mask and invert
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.final_layer_norm(inputs=sequence_output)
if self.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
pooled_output = tf.gather_nd(
params=sequence_output,
indices=tf.stack(
values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1
),
)
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = tf.gather_nd(
params=sequence_output,
indices=tf.stack(
values=(
tf.range(input_shape[0], dtype=tf.int64),
tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1),
),
axis=1,
),
)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32):
# It is possible with an unspecified sequence length for seq_length to be
# a runtime value, which is unsupported by tf.constant. Per the TensorFlow
# docs, tf.fill can handle runtime dynamic shapes:
# https://www.tensorflow.org/api_docs/python/tf/fill
diag = tf.cast(tf.fill((seq_length,), 0.0), dtype)
# set an additive 2D attention mask with all places being masked
to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype)
# set diagonal & lower triangular parts to 0 (i.e. the places not to be masked)
# TIP: think the 2D matrix as the space of (query_seq, key_seq)
to_mask = tf.linalg.band_part(to_mask, 0, -1)
# to_mask = tf.linalg.band_part(to_mask, -1, 0)
to_mask = tf.linalg.set_diag(to_mask, diagonal=diag)
return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length))
@keras_serializable
class TFCLIPTextMainLayer(tf.keras.layers.Layer):
config_class = CLIPTextConfig
def __init__(self, config: CLIPTextConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.text_model = TFCLIPTextTransformer(config, name="text_model")
def get_input_embeddings(self) -> tf.keras.layers.Layer:
return self.text_model.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.text_model.embeddings.weight = value
self.text_model.embeddings.vocab_size = shape_list(value)[0]
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = shape_list(input_ids)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
text_model_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return text_model_outputs
class TFCLIPVisionTransformer(tf.keras.layers.Layer):
def __init__(self, config: CLIPVisionConfig, **kwargs):
super().__init__(**kwargs)
self.embeddings = TFCLIPVisionEmbeddings(config, name="embeddings")
self.pre_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
self.encoder = TFCLIPEncoder(config, name="encoder")
self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")
def call(
self,
pixel_values: TFModelInputType,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
embedding_output = self.embeddings(pixel_values=pixel_values)
embedding_output = self.pre_layernorm(inputs=embedding_output)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=None,
causal_attention_mask=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = sequence_output[:, 0, :]
pooled_output = self.post_layernorm(inputs=pooled_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@keras_serializable
class TFCLIPVisionMainLayer(tf.keras.layers.Layer):
config_class = CLIPVisionConfig
def __init__(self, config: CLIPVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.vision_model = TFCLIPVisionTransformer(config, name="vision_model")
def get_input_embeddings(self) -> tf.keras.layers.Layer:
return self.vision_model.embeddings
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
vision_model_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return vision_model_outputs
@keras_serializable
class TFCLIPMainLayer(tf.keras.layers.Layer):
config_class = CLIPConfig
def __init__(self, config: CLIPConfig, **kwargs):
super().__init__(**kwargs)
if not isinstance(config.text_config, CLIPTextConfig):
raise ValueError(
"config.text_config is expected to be of type CLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, CLIPVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
self.config = config
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_model = TFCLIPTextTransformer(text_config, name="text_model")
self.vision_model = TFCLIPVisionTransformer(vision_config, name="vision_model")
self.visual_projection = tf.keras.layers.Dense(
units=self.projection_dim,
kernel_initializer=get_initializer(vision_config.hidden_size**-0.5 * self.config.initializer_factor),
use_bias=False,
name="visual_projection",
)
self.text_projection = tf.keras.layers.Dense(
units=self.projection_dim,
kernel_initializer=get_initializer(text_config.hidden_size**-0.5 * self.config.initializer_factor),
use_bias=False,
name="text_projection",
)
def build(self, input_shape: tf.TensorShape = None):
self.logit_scale = self.add_weight(
shape=(1,),
initializer=tf.keras.initializers.Constant(self.config.logit_scale_init_value),
trainable=True,
name="logit_scale",
)
super().build(input_shape)
@unpack_inputs
def get_text_features(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> tf.Tensor:
if input_ids is None:
raise ValueError("You have to specify either input_ids")
input_shape = shape_list(input_ids)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(inputs=pooled_output)
return text_features
@unpack_inputs
def get_image_features(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> tf.Tensor:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(inputs=pooled_output)
return image_features
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
pixel_values: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
if input_ids is None:
raise ValueError("You have to specify either input_ids")
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
input_shape = shape_list(input_ids)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(inputs=image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(inputs=text_embeds)
# normalized features
image_embeds = image_embeds / tf.norm(tensor=image_embeds, ord="euclidean", axis=-1, keepdims=True)
text_embeds = text_embeds / tf.norm(tensor=text_embeds, ord="euclidean", axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = tf.math.exp(self.logit_scale)
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
logits_per_image = tf.transpose(logits_per_text)
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
loss = tf.reshape(loss, (1,))
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return (loss,) + output if loss is not None else output
return TFCLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
class TFCLIPPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CLIPConfig
base_model_prefix = "clip"
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"position_ids"]
CLIP_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
CLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
CLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to
return the attentions tensors of all attention layers. See `attentions` under returned tensors for more
detail. This argument can be used only in eager mode, in graph mode the value in the config will be used
instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
CLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
class TFCLIPTextModel(TFCLIPPreTrainedModel):
config_class = CLIPTextConfig
def __init__(self, config: CLIPTextConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.clip = TFCLIPTextMainLayer(config, name="clip")
@unpack_inputs
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPTextConfig)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TFCLIPTextModel
>>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
outputs = self.clip(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
class TFCLIPVisionModel(TFCLIPPreTrainedModel):
config_class = CLIPVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: CLIPVisionConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.clip = TFCLIPVisionMainLayer(config, name="clip")
@unpack_inputs
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPVisionConfig)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFCLIPVisionModel
>>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
outputs = self.clip(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
@add_start_docstrings(CLIP_START_DOCSTRING)
class TFCLIPModel(TFCLIPPreTrainedModel):
config_class = CLIPConfig
def __init__(self, config: CLIPConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.clip = TFCLIPMainLayer(config, name="clip")
@unpack_inputs
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def get_text_features(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> tf.Tensor:
r"""
Returns:
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of [`TFCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> text_features = model.get_text_features(**inputs)
```"""
text_features = self.clip.get_text_features(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return text_features
@unpack_inputs
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: TFModelInputType | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> tf.Tensor:
r"""
Returns:
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
the projection layer to the pooled output of [`TFCLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> image_features = model.get_image_features(**inputs)
```"""
image_features = self.clip.get_image_features(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return image_features
@unpack_inputs
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFCLIPOutput, config_class=CLIPConfig)
def call(
self,
input_ids: TFModelInputType | None = None,
pixel_values: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFCLIPModel
>>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```"""
outputs = self.clip(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids,
return_loss=return_loss,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
def serving_output(self, output: TFCLIPOutput) -> TFCLIPOutput:
# TODO: As is this currently fails with saved_model=True, because
# TensorFlow cannot trace through nested dataclasses. Reference:
# https://github.com/huggingface/transformers/pull/16886
return output
|