File size: 54,435 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 CLIP model."""


from __future__ import annotations

import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling

# Public API
from ...modeling_tf_utils import (
    TFModelInputType,
    TFPreTrainedModel,
    get_initializer,
    keras_serializable,
    unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"

TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "openai/clip-vit-base-patch32",
    # See all CLIP models at https://huggingface.co/models?filter=clip
]


LARGE_NEGATIVE = -1e8


# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    src_len = shape_list(mask)[1]
    tgt_len = tgt_len if tgt_len is not None else src_len
    one_cst = tf.constant(1.0)
    mask = tf.cast(mask, dtype=one_cst.dtype)
    expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))

    return (one_cst - expanded_mask) * LARGE_NEGATIVE


# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
    return tf.math.reduce_mean(
        tf.keras.metrics.sparse_categorical_crossentropy(
            y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
        )
    )


def clip_loss(similarity: tf.Tensor) -> tf.Tensor:
    caption_loss = contrastive_loss(similarity)
    image_loss = contrastive_loss(tf.transpose(similarity))
    return (caption_loss + image_loss) / 2.0


@dataclass
class TFCLIPOutput(ModelOutput):
    """
    Args:
        loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
            Contrastive loss for image-text similarity.
        logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
            The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
            similarity scores.
        logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
            The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
            similarity scores.
        text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
            The text embeddings obtained by applying the projection layer to the pooled output of [`TFCLIPTextModel`].
        image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
            The image embeddings obtained by applying the projection layer to the pooled output of
            [`TFCLIPVisionModel`].
        text_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
            The output of the [`TFCLIPTextModel`].
        vision_model_output([`~modeling_tf_utils.TFBaseModelOutputWithPooling`]):
            The output of the [`TFCLIPVisionModel`].
    """

    loss: tf.Tensor | None = None
    logits_per_image: tf.Tensor = None
    logits_per_text: tf.Tensor = None
    text_embeds: tf.Tensor = None
    image_embeds: tf.Tensor = None
    text_model_output: TFBaseModelOutputWithPooling = None
    vision_model_output: TFBaseModelOutputWithPooling = None

    def to_tuple(self) -> Tuple[Any]:
        return tuple(
            self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
            for k in self.keys()
        )


class TFCLIPVisionEmbeddings(tf.keras.layers.Layer):
    def __init__(self, config: CLIPVisionConfig, **kwargs):
        super().__init__(**kwargs)

        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1

        self.config = config

        self.patch_embedding = tf.keras.layers.Conv2D(
            filters=self.embed_dim,
            kernel_size=self.patch_size,
            strides=self.patch_size,
            padding="valid",
            data_format="channels_last",
            use_bias=False,
            kernel_initializer=get_initializer(self.config.initializer_range * self.config.initializer_factor),
            name="patch_embedding",
        )

    def build(self, input_shape: tf.TensorShape = None):
        factor = self.config.initializer_factor

        self.class_embedding = self.add_weight(
            shape=(self.embed_dim,),
            initializer=get_initializer(self.embed_dim**-0.5 * factor),
            trainable=True,
            name="class_embedding",
        )

        with tf.name_scope("position_embedding"):
            self.position_embedding = self.add_weight(
                shape=(self.num_positions, self.embed_dim),
                initializer=get_initializer(self.config.initializer_range * factor),
                trainable=True,
                name="embeddings",
            )

        super().build(input_shape)

    def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
        """`pixel_values` is expected to be of NCHW format."""

        batch_size, num_channels, height, width = shape_list(pixel_values)

        # When running on CPU, `tf.nn.conv2d` doesn't support `NCHW` format.
        # So change the input format from `NCHW` to `NHWC`.
        # shape = (batch_size, in_height, in_width, in_channels=num_channels)
        pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))

        patch_embeds = self.patch_embedding(pixel_values)

        # Change the 2D spatial dimensions to a single temporal dimension.
        # shape = (batch_size, num_patches, out_channels=embed_dim)
        patch_embeds = tf.reshape(tensor=patch_embeds, shape=(batch_size, self.num_patches, -1))

        # add the [CLS] token to the embedded patch tokens
        class_embeds = tf.broadcast_to(self.class_embedding, shape=(batch_size, 1, self.embed_dim))
        embeddings = tf.concat((class_embeds, patch_embeds), axis=1)

        embeddings = embeddings + self.position_embedding

        return embeddings


class TFCLIPTextEmbeddings(tf.keras.layers.Layer):
    def __init__(self, config: CLIPTextConfig, **kwargs):
        super().__init__(**kwargs)

        self.embed_dim = config.hidden_size

        self.config = config

    def build(self, input_shape: tf.TensorShape = None):
        with tf.name_scope("token_embedding"):
            self.weight = self.add_weight(
                shape=(self.config.vocab_size, self.embed_dim),
                initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
                trainable=True,
                name="weight",
            )

        with tf.name_scope("position_embedding"):
            self.position_embedding = self.add_weight(
                shape=(self.config.max_position_embeddings, self.embed_dim),
                initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
                trainable=True,
                name="embeddings",
            )

        super().build(input_shape)

    def call(
        self,
        input_ids: tf.Tensor = None,
        position_ids: tf.Tensor = None,
        inputs_embeds: tf.Tensor = None,
    ) -> tf.Tensor:
        """
        Applies embedding based on inputs tensor.

        Returns:
            final_embeddings (`tf.Tensor`): output embedding tensor.
        """
        if input_ids is None and inputs_embeds is None:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            check_embeddings_within_bounds(input_ids, self.config.vocab_size)
            inputs_embeds = tf.gather(params=self.weight, indices=input_ids)

        input_shape = shape_list(inputs_embeds)[:-1]

        if position_ids is None:
            position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)

        position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
        position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
        final_embeddings = inputs_embeds + position_embeds

        return final_embeddings


class TFCLIPAttention(tf.keras.layers.Layer):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: CLIPConfig, **kwargs):
        super().__init__(**kwargs)

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = self.embed_dim // self.num_attention_heads
        if self.attention_head_size * self.num_attention_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_attention_heads})."
            )

        factor = config.initializer_factor
        in_proj_std = (self.embed_dim**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
        out_proj_std = (self.embed_dim**-0.5) * factor

        self.sqrt_att_head_size = math.sqrt(self.attention_head_size)

        self.q_proj = tf.keras.layers.Dense(
            units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="q_proj"
        )
        self.k_proj = tf.keras.layers.Dense(
            units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="k_proj"
        )
        self.v_proj = tf.keras.layers.Dense(
            units=self.embed_dim, kernel_initializer=get_initializer(in_proj_std), name="v_proj"
        )

        self.dropout = tf.keras.layers.Dropout(rate=config.attention_dropout)

        self.out_proj = tf.keras.layers.Dense(
            units=self.embed_dim, kernel_initializer=get_initializer(out_proj_std), name="out_proj"
        )

    # copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention.transpose_for_scores
    def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
        # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
        tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))

        # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
        return tf.transpose(tensor, perm=[0, 2, 1, 3])

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        causal_attention_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        """Input shape: Batch x Time x Channel"""

        batch_size = shape_list(hidden_states)[0]
        mixed_query_layer = self.q_proj(inputs=hidden_states)
        mixed_key_layer = self.k_proj(inputs=hidden_states)
        mixed_value_layer = self.v_proj(inputs=hidden_states)
        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        # (batch size, num_heads, seq_len_q, seq_len_k)
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
        dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
        attention_scores = tf.divide(attention_scores, dk)

        # apply the causal_attention_mask first
        if causal_attention_mask is not None:
            # Apply the causal attention mask (precomputed for all layers in TFCLIPModel call() function)
            attention_scores = tf.add(attention_scores, causal_attention_mask)

        if attention_mask is not None:
            # Apply the attention mask (precomputed for all layers in TFCLIPModel call() function)
            attention_scores = tf.add(attention_scores, attention_mask)

        # Normalize the attention scores to probabilities.
        _attention_probs = stable_softmax(logits=attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(inputs=_attention_probs, training=training)

        attention_output = tf.matmul(attention_probs, value_layer)
        attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])

        # (batch_size, seq_len_q, embed_dim)
        attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.embed_dim))

        attention_output = self.out_proj(attention_output, training=training)
        # In TFBert, attention weights are returned after dropout.
        # However, in CLIP, they are returned before dropout.
        outputs = (attention_output, _attention_probs) if output_attentions else (attention_output,)

        return outputs


class TFCLIPMLP(tf.keras.layers.Layer):
    def __init__(self, config: CLIPConfig, **kwargs):
        super().__init__(**kwargs)

        self.activation_fn = get_tf_activation(config.hidden_act)

        factor = config.initializer_factor
        in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5) * factor
        fc_std = (2 * config.hidden_size) ** -0.5 * factor

        self.fc1 = tf.keras.layers.Dense(
            units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
        )
        self.fc2 = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
        )

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.fc1(inputs=hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(inputs=hidden_states)
        return hidden_states


class TFCLIPEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, config: CLIPConfig, **kwargs):
        super().__init__(**kwargs)

        self.embed_dim = config.hidden_size
        self.self_attn = TFCLIPAttention(config, name="self_attn")
        self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
        self.mlp = TFCLIPMLP(config, name="mlp")
        self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        causal_attention_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        """
        Args:
            hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`tf.Tensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            causal_attention_mask (`tf.Tensor`): causal attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`):
                Whether or not to return the attentions tensors of all attention layers. See `outputs` under returned
                tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(inputs=hidden_states)
        attention_outputs = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            output_attentions=output_attentions,
            training=training,
        )
        hidden_states = attention_outputs[0]
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(inputs=hidden_states)
        hidden_states = self.mlp(hidden_states=hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,) + attention_outputs[1:]  # add attentions if we output them

        return outputs


class TFCLIPEncoder(tf.keras.layers.Layer):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`TFCLIPEncoderLayer`].

    Args:
        config: CLIPConfig
    """

    def __init__(self, config: CLIPConfig, **kwargs):
        super().__init__(**kwargs)

        self.layers = [TFCLIPEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        causal_attention_mask: tf.Tensor,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                causal_attention_mask=causal_attention_mask,
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)

        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


class TFCLIPTextTransformer(tf.keras.layers.Layer):
    def __init__(self, config: CLIPTextConfig, **kwargs):
        super().__init__(**kwargs)

        self.embeddings = TFCLIPTextEmbeddings(config, name="embeddings")
        self.encoder = TFCLIPEncoder(config, name="encoder")
        self.final_layer_norm = tf.keras.layers.LayerNormalization(
            epsilon=config.layer_norm_eps, name="final_layer_norm"
        )

        # For `pooled_output` computation
        self.eos_token_id = config.eos_token_id

    def call(
        self,
        input_ids: TFModelInputType,
        attention_mask: tf.Tensor,
        position_ids: tf.Tensor,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        input_shape = shape_list(input_ids)

        embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)

        batch_size, seq_length = input_shape
        # CLIP's text model uses causal mask, prepare it here.
        # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
        causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_length, dtype=embedding_output.dtype)

        # check attention mask and invert
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        attention_mask = _expand_mask(attention_mask)

        encoder_outputs = self.encoder(
            hidden_states=embedding_output,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        sequence_output = encoder_outputs[0]
        sequence_output = self.final_layer_norm(inputs=sequence_output)

        if self.eos_token_id == 2:
            # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
            # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
            # ------------------------------------------------------------
            # text_embeds.shape = [batch_size, n_ctx, transformer.width]
            # take features from the eot embedding (eot_token is the highest number in each sequence)
            pooled_output = tf.gather_nd(
                params=sequence_output,
                indices=tf.stack(
                    values=(tf.range(input_shape[0], dtype=tf.int64), tf.math.argmax(input_ids, axis=-1)), axis=1
                ),
            )
        else:
            # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
            pooled_output = tf.gather_nd(
                params=sequence_output,
                indices=tf.stack(
                    values=(
                        tf.range(input_shape[0], dtype=tf.int64),
                        tf.math.argmax(tf.cast(input_ids == self.eos_token_id, dtype=tf.int8), axis=-1),
                    ),
                    axis=1,
                ),
            )

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def _build_causal_attention_mask(self, batch_size, seq_length, dtype=tf.float32):
        # It is possible with an unspecified sequence length for seq_length to be
        # a runtime value, which is unsupported by tf.constant. Per the TensorFlow
        # docs, tf.fill can handle runtime dynamic shapes:
        # https://www.tensorflow.org/api_docs/python/tf/fill
        diag = tf.cast(tf.fill((seq_length,), 0.0), dtype)

        # set an additive 2D attention mask with all places being masked
        to_mask = tf.cast(tf.fill((seq_length, seq_length), -10000.0), dtype)

        # set diagonal & lower triangular parts to 0 (i.e. the places not to be masked)
        # TIP: think the 2D matrix as the space of (query_seq, key_seq)
        to_mask = tf.linalg.band_part(to_mask, 0, -1)
        # to_mask = tf.linalg.band_part(to_mask, -1, 0)
        to_mask = tf.linalg.set_diag(to_mask, diagonal=diag)

        return tf.broadcast_to(input=to_mask, shape=(batch_size, 1, seq_length, seq_length))


@keras_serializable
class TFCLIPTextMainLayer(tf.keras.layers.Layer):
    config_class = CLIPTextConfig

    def __init__(self, config: CLIPTextConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.text_model = TFCLIPTextTransformer(config, name="text_model")

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.text_model.embeddings

    def set_input_embeddings(self, value: tf.Variable):
        self.text_model.embeddings.weight = value
        self.text_model.embeddings.vocab_size = shape_list(value)[0]

    @unpack_inputs
    def call(
        self,
        input_ids: TFModelInputType | None = None,
        attention_mask: np.ndarray | tf.Tensor | None = None,
        position_ids: np.ndarray | tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        if input_ids is None:
            raise ValueError("You have to specify input_ids")

        input_shape = shape_list(input_ids)

        if attention_mask is None:
            attention_mask = tf.fill(dims=input_shape, value=1)

        text_model_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        return text_model_outputs


class TFCLIPVisionTransformer(tf.keras.layers.Layer):
    def __init__(self, config: CLIPVisionConfig, **kwargs):
        super().__init__(**kwargs)

        self.embeddings = TFCLIPVisionEmbeddings(config, name="embeddings")
        self.pre_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
        self.encoder = TFCLIPEncoder(config, name="encoder")
        self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")

    def call(
        self,
        pixel_values: TFModelInputType,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        embedding_output = self.embeddings(pixel_values=pixel_values)
        embedding_output = self.pre_layernorm(inputs=embedding_output)

        encoder_outputs = self.encoder(
            hidden_states=embedding_output,
            attention_mask=None,
            causal_attention_mask=None,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        sequence_output = encoder_outputs[0]
        pooled_output = sequence_output[:, 0, :]
        pooled_output = self.post_layernorm(inputs=pooled_output)

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@keras_serializable
class TFCLIPVisionMainLayer(tf.keras.layers.Layer):
    config_class = CLIPVisionConfig

    def __init__(self, config: CLIPVisionConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.vision_model = TFCLIPVisionTransformer(config, name="vision_model")

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.vision_model.embeddings

    @unpack_inputs
    def call(
        self,
        pixel_values: TFModelInputType | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        vision_model_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        return vision_model_outputs


@keras_serializable
class TFCLIPMainLayer(tf.keras.layers.Layer):
    config_class = CLIPConfig

    def __init__(self, config: CLIPConfig, **kwargs):
        super().__init__(**kwargs)

        if not isinstance(config.text_config, CLIPTextConfig):
            raise ValueError(
                "config.text_config is expected to be of type CLIPTextConfig but is of type"
                f" {type(config.text_config)}."
            )

        if not isinstance(config.vision_config, CLIPVisionConfig):
            raise ValueError(
                "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
                f" {type(config.vision_config)}."
            )

        self.config = config

        text_config = config.text_config
        vision_config = config.vision_config

        self.projection_dim = config.projection_dim

        self.text_model = TFCLIPTextTransformer(text_config, name="text_model")
        self.vision_model = TFCLIPVisionTransformer(vision_config, name="vision_model")

        self.visual_projection = tf.keras.layers.Dense(
            units=self.projection_dim,
            kernel_initializer=get_initializer(vision_config.hidden_size**-0.5 * self.config.initializer_factor),
            use_bias=False,
            name="visual_projection",
        )

        self.text_projection = tf.keras.layers.Dense(
            units=self.projection_dim,
            kernel_initializer=get_initializer(text_config.hidden_size**-0.5 * self.config.initializer_factor),
            use_bias=False,
            name="text_projection",
        )

    def build(self, input_shape: tf.TensorShape = None):
        self.logit_scale = self.add_weight(
            shape=(1,),
            initializer=tf.keras.initializers.Constant(self.config.logit_scale_init_value),
            trainable=True,
            name="logit_scale",
        )

        super().build(input_shape)

    @unpack_inputs
    def get_text_features(
        self,
        input_ids: TFModelInputType | None = None,
        attention_mask: np.ndarray | tf.Tensor | None = None,
        position_ids: np.ndarray | tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> tf.Tensor:
        if input_ids is None:
            raise ValueError("You have to specify either input_ids")

        input_shape = shape_list(input_ids)

        if attention_mask is None:
            attention_mask = tf.fill(dims=input_shape, value=1)

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        pooled_output = text_outputs[1]
        text_features = self.text_projection(inputs=pooled_output)

        return text_features

    @unpack_inputs
    def get_image_features(
        self,
        pixel_values: TFModelInputType | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> tf.Tensor:
        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        pooled_output = vision_outputs[1]  # pooled_output
        image_features = self.visual_projection(inputs=pooled_output)

        return image_features

    @unpack_inputs
    def call(
        self,
        input_ids: TFModelInputType | None = None,
        pixel_values: TFModelInputType | None = None,
        attention_mask: np.ndarray | tf.Tensor | None = None,
        position_ids: np.ndarray | tf.Tensor | None = None,
        return_loss: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
        if input_ids is None:
            raise ValueError("You have to specify either input_ids")
        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        input_shape = shape_list(input_ids)

        if attention_mask is None:
            attention_mask = tf.fill(dims=input_shape, value=1)

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        image_embeds = vision_outputs[1]
        image_embeds = self.visual_projection(inputs=image_embeds)

        text_embeds = text_outputs[1]
        text_embeds = self.text_projection(inputs=text_embeds)

        # normalized features
        image_embeds = image_embeds / tf.norm(tensor=image_embeds, ord="euclidean", axis=-1, keepdims=True)
        text_embeds = text_embeds / tf.norm(tensor=text_embeds, ord="euclidean", axis=-1, keepdims=True)

        # cosine similarity as logits
        logit_scale = tf.math.exp(self.logit_scale)
        logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
        logits_per_image = tf.transpose(logits_per_text)

        loss = None
        if return_loss:
            loss = clip_loss(logits_per_text)
            loss = tf.reshape(loss, (1,))

        if not return_dict:
            output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
            return (loss,) + output if loss is not None else output

        return TFCLIPOutput(
            loss=loss,
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            image_embeds=image_embeds,
            text_model_output=text_outputs,
            vision_model_output=vision_outputs,
        )


class TFCLIPPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CLIPConfig
    base_model_prefix = "clip"
    _keys_to_ignore_on_load_missing = [r"position_ids"]
    _keys_to_ignore_on_load_unexpected = [r"position_ids"]


CLIP_START_DOCSTRING = r"""

    This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
    as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
    behavior.

    <Tip>

    TensorFlow models and layers in `transformers` accept two formats as input:

    - having all inputs as keyword arguments (like PyTorch models), or
    - having all inputs as a list, tuple or dict in the first positional argument.

    The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
    and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
    pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
    format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
    the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
    positional argument:

    - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
    - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
    `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
    - a dictionary with one or several input Tensors associated to the input names given in the docstring:
    `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`

    Note that when creating models and layers with
    [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
    about any of this, as you can just pass inputs like you would to any other Python function!

    </Tip>

    Args:
        config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""

CLIP_TEXT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
            [`PreTrainedTokenizer.encode`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
            config will be used instead.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
            eager mode, in graph mode the value will always be set to True.
        training (`bool`, *optional*, defaults to `False``):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""

CLIP_VISION_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to
            return the attentions tensors of all attention layers. See `attentions` under returned tensors for more
            detail. This argument can be used only in eager mode, in graph mode the value in the config will be used
            instead.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
            eager mode, in graph mode the value will always be set to True.
        training (`bool`, *optional*, defaults to `False``):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""

CLIP_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
            [`PreTrainedTokenizer.encode`] for details.

            [What are input IDs?](../glossary#input-ids)
        pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`CLIPImageProcessor.__call__`] for details.
        attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        return_loss (`bool`, *optional*):
            Whether or not to return the contrastive loss.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
            config will be used instead.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
            eager mode, in graph mode the value will always be set to True.
        training (`bool`, *optional*, defaults to `False``):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""


class TFCLIPTextModel(TFCLIPPreTrainedModel):
    config_class = CLIPTextConfig

    def __init__(self, config: CLIPTextConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.clip = TFCLIPTextMainLayer(config, name="clip")

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPTextConfig)
    def call(
        self,
        input_ids: TFModelInputType | None = None,
        attention_mask: np.ndarray | tf.Tensor | None = None,
        position_ids: np.ndarray | tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, TFCLIPTextModel

        >>> model = TFCLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

        >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled (EOS token) states
        ```"""

        outputs = self.clip(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        return outputs


class TFCLIPVisionModel(TFCLIPPreTrainedModel):
    config_class = CLIPVisionConfig
    main_input_name = "pixel_values"

    def __init__(self, config: CLIPVisionConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.clip = TFCLIPVisionMainLayer(config, name="clip")

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=CLIPVisionConfig)
    def call(
        self,
        pixel_values: TFModelInputType | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFCLIPVisionModel

        >>> model = TFCLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="tf")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled CLS states
        ```"""

        outputs = self.clip(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        return outputs


@add_start_docstrings(CLIP_START_DOCSTRING)
class TFCLIPModel(TFCLIPPreTrainedModel):
    config_class = CLIPConfig

    def __init__(self, config: CLIPConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.clip = TFCLIPMainLayer(config, name="clip")

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    def get_text_features(
        self,
        input_ids: TFModelInputType | None = None,
        attention_mask: np.ndarray | tf.Tensor | None = None,
        position_ids: np.ndarray | tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> tf.Tensor:
        r"""
        Returns:
            text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
            the projection layer to the pooled output of [`TFCLIPTextModel`].

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, TFCLIPModel

        >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

        >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
        >>> text_features = model.get_text_features(**inputs)
        ```"""

        text_features = self.clip.get_text_features(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return text_features

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
    def get_image_features(
        self,
        pixel_values: TFModelInputType | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> tf.Tensor:
        r"""
        Returns:
            image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
            the projection layer to the pooled output of [`TFCLIPVisionModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFCLIPModel

        >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="tf")

        >>> image_features = model.get_image_features(**inputs)
        ```"""

        image_features = self.clip.get_image_features(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return image_features

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=TFCLIPOutput, config_class=CLIPConfig)
    def call(
        self,
        input_ids: TFModelInputType | None = None,
        pixel_values: TFModelInputType | None = None,
        attention_mask: np.ndarray | tf.Tensor | None = None,
        position_ids: np.ndarray | tf.Tensor | None = None,
        return_loss: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFCLIPOutput, Tuple[tf.Tensor]]:
        r"""
        Returns:

        Examples:

        ```python
        >>> import tensorflow as tf
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFCLIPModel

        >>> model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(
        ...     text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
        ... )

        >>> outputs = model(**inputs)
        >>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
        >>> probs = tf.nn.softmax(logits_per_image, axis=1)  # we can take the softmax to get the label probabilities
        ```"""

        outputs = self.clip(
            input_ids=input_ids,
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            return_loss=return_loss,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return outputs

    def serving_output(self, output: TFCLIPOutput) -> TFCLIPOutput:
        # TODO: As is this currently fails with saved_model=True, because
        # TensorFlow cannot trace through nested dataclasses. Reference:
        # https://github.com/huggingface/transformers/pull/16886
        return output