File size: 20,636 Bytes
9231ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLAP model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = {
"laion/clap-htsat-fused": "https://huggingface.co/laion/clap-htsat-fused/resolve/main/config.json",
"laion/clap-htsat-unfused": "https://huggingface.co/laion/clap-htsat-unfused/resolve/main/config.json",
}
class ClapTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the CLAP
[calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ClapTextModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`,
`"relu"`, `"silu"` and `"relu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`].
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
projection_dim (`int`, *optional*, defaults to 512)
Dimension of the projection head of the `ClapTextModelWithProjection`.
Examples:
```python
>>> from transformers import ClapTextConfig, ClapTextModel
>>> # Initializing a CLAP text configuration
>>> configuration = ClapTextConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = ClapTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clap_text_model"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
initializer_factor=1.0,
layer_norm_eps=1e-12,
projection_dim=512,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
projection_hidden_act="relu",
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.projection_hidden_act = projection_hidden_act
self.projection_dim = projection_dim
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from ClapConfig
if config_dict.get("model_type") == "clap":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ClapAudioConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a
CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP
[laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
window_size (`int`, *optional*, defaults to 8):
Image size of the spectrogram
num_mel_bins (`int`, *optional*, defaults to 64):
Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class.
spec_size (`int`, *optional*, defaults to 256):
Desired input size of the spectrogram that the model supports. It can be different from the output of the
`ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size`
of the audio models.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
patch_size (`int`, *optional*, defaults to 4):
Patch size for the audio spectrogram
patch_stride (`list`, *optional*, defaults to `[4, 4]`):
Patch stride for the audio spectrogram
num_classes (`int`, *optional*, defaults to 527):
Number of classes used for the head training
hidden_size (`int`, *optional*, defaults to 768):
Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's
output,which is sent to the projection MLP layer.
projection_dim (`int`, *optional*, defaults to 512):
Hidden size of the projection layer.
depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`):
Depths used for the Swin Layers of the audio model
num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`):
Number of attention heads used for the Swin Layers of the audio model
enable_fusion (`bool`, *optional*, defaults to `False`):
Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the
best results.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the encoder.
fusion_type (`[type]`, *optional*):
Fusion type used for the patch fusion.
patch_embed_input_channels (`int`, *optional*, defaults to 1):
Number of channels used for the input spectrogram
flatten_patch_embeds (`bool`, *optional*, defaults to `True`):
Whether or not to flatten the patch embeddings
patch_embeds_hidden_size (`int`, *optional*, defaults to 96):
Hidden size of the patch embeddings. It is used as the number of output channels.
enable_patch_layer_norm (`bool`, *optional*, defaults to `True`):
Whether or not to enable layer normalization for the patch embeddings
drop_path_rate (`float`, *optional*, defaults to 0.0):
Drop path rate for the patch fusion
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not to add a bias to the query, key, value projections.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of the mlp hidden dim to embedding dim.
aff_block_r (`int`, *optional*, defaults to 4):
downsize_ratio used in the AudioFF block
num_hidden_layers (`int`, *optional*, defaults to 4):
Number of hidden layers in the Transformer encoder.
projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
layer_norm_eps (`[type]`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import ClapAudioConfig, ClapAudioModel
>>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration
>>> configuration = ClapAudioConfig()
>>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration
>>> model = ClapAudioModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clap_audio_model"
def __init__(
self,
window_size=8,
num_mel_bins=64,
spec_size=256,
hidden_act="gelu",
patch_size=4,
patch_stride=[4, 4],
num_classes=527,
hidden_size=768,
projection_dim=512,
depths=[2, 2, 6, 2],
num_attention_heads=[4, 8, 16, 32],
enable_fusion=False,
hidden_dropout_prob=0.1,
fusion_type=None,
patch_embed_input_channels=1,
flatten_patch_embeds=True,
patch_embeds_hidden_size=96,
enable_patch_layer_norm=True,
drop_path_rate=0.0,
attention_probs_dropout_prob=0.0,
qkv_bias=True,
mlp_ratio=4.0,
aff_block_r=4,
num_hidden_layers=4,
projection_hidden_act="relu",
layer_norm_eps=1e-5,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.window_size = window_size
self.num_mel_bins = num_mel_bins
self.spec_size = spec_size
self.patch_size = patch_size
self.patch_stride = patch_stride
self.num_classes = num_classes
self.hidden_size = hidden_size
self.depths = depths
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.window_size = window_size
self.enable_fusion = enable_fusion
self.fusion_type = fusion_type
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.projection_dim = projection_dim
self.flatten_patch_embeds = flatten_patch_embeds
self.patch_embeds_hidden_size = patch_embeds_hidden_size
self.enable_patch_layer_norm = enable_patch_layer_norm
self.drop_path_rate = drop_path_rate
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.qkv_bias = qkv_bias
self.mlp_ratio = mlp_ratio
self.patch_embed_input_channels = patch_embed_input_channels
self.aff_block_r = aff_block_r
self.layer_norm_eps = layer_norm_eps
self.initializer_factor = initializer_factor
self.projection_hidden_act = projection_hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the audio config dict if we are loading from ClapConfig
if config_dict.get("model_type") == "clap":
config_dict = config_dict["audio_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ClapConfig(PretrainedConfig):
r"""
[`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate
a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a
configuration with the defaults will yield a similar configuration to that of the CLAP
[laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`ClapTextConfig`].
audio_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`ClapAudioConfig`].
logit_scale_init_value (`float`, *optional*, defaults to 14.29):
The inital value of the *logit_scale* paramter. Default is used as per the original CLAP implementation.
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and audio projection layers.
projection_hidden_act (`str`, *optional*, defaults to `"relu"`):
Activation function for the projection layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
Factor to scale the initialization of the model weights.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import ClapConfig, ClapModel
>>> # Initializing a ClapConfig with laion-ai/base style configuration
>>> configuration = ClapConfig()
>>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration
>>> model = ClapModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig
>>> from transformers import ClapTextConfig, ClapAudioConfig
>>> # Initializing a ClapText and ClapAudioConfig configuration
>>> config_text = ClapTextConfig()
>>> config_audio = ClapAudioConfig()
>>> config = ClapConfig.from_text_audio_configs(config_text, config_audio)
```"""
model_type = "clap"
def __init__(
self,
text_config=None,
audio_config=None,
logit_scale_init_value=(1 / 0.07),
projection_dim=512,
projection_hidden_act="relu",
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the ClapTextConfig with default values.")
if audio_config is None:
audio_config = {}
logger.info("audio_config is None. initializing the ClapAudioConfig with default values.")
self.text_config = ClapTextConfig(**text_config)
self.audio_config = ClapAudioConfig(**audio_config)
self.text_config.projection_dim = projection_dim
self.audio_config.projection_dim = projection_dim
self.text_config.projection_hidden_act = projection_hidden_act
self.audio_config.projection_hidden_act = projection_hidden_act
self.projection_dim = projection_dim
self.projection_hidden_act = projection_hidden_act
self.hidden_size = self.text_config.hidden_size
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = initializer_factor
self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths)
@classmethod
def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs):
r"""
Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model
configuration.
Returns:
[`ClapConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs)
|