File size: 6,329 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from argparse import ArgumentParser, Namespace

from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand


if not is_tf_available() and not is_torch_available():
    raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")

# TF training parameters
USE_XLA = False
USE_AMP = False


def train_command_factory(args: Namespace):
    """
    Factory function used to instantiate training command from provided command line arguments.

    Returns: TrainCommand
    """
    return TrainCommand(args)


class TrainCommand(BaseTransformersCLICommand):
    @staticmethod
    def register_subcommand(parser: ArgumentParser):
        """
        Register this command to argparse so it's available for the transformer-cli

        Args:
            parser: Root parser to register command-specific arguments
        """
        train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")

        train_parser.add_argument(
            "--train_data",
            type=str,
            required=True,
            help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
        )
        train_parser.add_argument(
            "--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
        )
        train_parser.add_argument(
            "--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
        )
        train_parser.add_argument(
            "--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
        )
        train_parser.add_argument(
            "--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
        )

        train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
        train_parser.add_argument(
            "--validation_split",
            type=float,
            default=0.1,
            help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
        )

        train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")

        train_parser.add_argument(
            "--task", type=str, default="text_classification", help="Task to train the model on."
        )
        train_parser.add_argument(
            "--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model."
        )
        train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
        train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
        train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
        train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
        train_parser.set_defaults(func=train_command_factory)

    def __init__(self, args: Namespace):
        self.logger = logging.get_logger("transformers-cli/training")

        self.framework = "tf" if is_tf_available() else "torch"

        os.makedirs(args.output, exist_ok=True)
        self.output = args.output

        self.column_label = args.column_label
        self.column_text = args.column_text
        self.column_id = args.column_id

        self.logger.info(f"Loading {args.task} pipeline for {args.model}")
        if args.task == "text_classification":
            self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
        elif args.task == "token_classification":
            raise NotImplementedError
        elif args.task == "question_answering":
            raise NotImplementedError

        self.logger.info(f"Loading dataset from {args.train_data}")
        self.train_dataset = Processor.create_from_csv(
            args.train_data,
            column_label=args.column_label,
            column_text=args.column_text,
            column_id=args.column_id,
            skip_first_row=args.skip_first_row,
        )
        self.valid_dataset = None
        if args.validation_data:
            self.logger.info(f"Loading validation dataset from {args.validation_data}")
            self.valid_dataset = Processor.create_from_csv(
                args.validation_data,
                column_label=args.column_label,
                column_text=args.column_text,
                column_id=args.column_id,
                skip_first_row=args.skip_first_row,
            )

        self.validation_split = args.validation_split
        self.train_batch_size = args.train_batch_size
        self.valid_batch_size = args.valid_batch_size
        self.learning_rate = args.learning_rate
        self.adam_epsilon = args.adam_epsilon

    def run(self):
        if self.framework == "tf":
            return self.run_tf()
        return self.run_torch()

    def run_torch(self):
        raise NotImplementedError

    def run_tf(self):
        self.pipeline.fit(
            self.train_dataset,
            validation_data=self.valid_dataset,
            validation_split=self.validation_split,
            learning_rate=self.learning_rate,
            adam_epsilon=self.adam_epsilon,
            train_batch_size=self.train_batch_size,
            valid_batch_size=self.valid_batch_size,
        )

        # Save trained pipeline
        self.pipeline.save_pretrained(self.output)