File size: 72,929 Bytes
9231ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import difflib
import json
import os
import re
from argparse import ArgumentParser, Namespace
from dataclasses import dataclass
from datetime import date
from itertools import chain
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Pattern, Tuple, Union
import yaml
from ..models import auto as auto_module
from ..models.auto.configuration_auto import model_type_to_module_name
from ..utils import is_flax_available, is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
CURRENT_YEAR = date.today().year
TRANSFORMERS_PATH = Path(__file__).parent.parent
REPO_PATH = TRANSFORMERS_PATH.parent.parent
@dataclass
class ModelPatterns:
"""
Holds the basic information about a new model for the add-new-model-like command.
Args:
model_name (`str`): The model name.
checkpoint (`str`): The checkpoint to use for doc examples.
model_type (`str`, *optional*):
The model type, the identifier used internally in the library like `bert` or `xlm-roberta`. Will default to
`model_name` lowercased with spaces replaced with minuses (-).
model_lower_cased (`str`, *optional*):
The lowercased version of the model name, to use for the module name or function names. Will default to
`model_name` lowercased with spaces and minuses replaced with underscores.
model_camel_cased (`str`, *optional*):
The camel-cased version of the model name, to use for the class names. Will default to `model_name`
camel-cased (with spaces and minuses both considered as word separators.
model_upper_cased (`str`, *optional*):
The uppercased version of the model name, to use for the constant names. Will default to `model_name`
uppercased with spaces and minuses replaced with underscores.
config_class (`str`, *optional*):
The tokenizer class associated with this model. Will default to `"{model_camel_cased}Config"`.
tokenizer_class (`str`, *optional*):
The tokenizer class associated with this model (leave to `None` for models that don't use a tokenizer).
image_processor_class (`str`, *optional*):
The image processor class associated with this model (leave to `None` for models that don't use an image
processor).
feature_extractor_class (`str`, *optional*):
The feature extractor class associated with this model (leave to `None` for models that don't use a feature
extractor).
processor_class (`str`, *optional*):
The processor class associated with this model (leave to `None` for models that don't use a processor).
"""
model_name: str
checkpoint: str
model_type: Optional[str] = None
model_lower_cased: Optional[str] = None
model_camel_cased: Optional[str] = None
model_upper_cased: Optional[str] = None
config_class: Optional[str] = None
tokenizer_class: Optional[str] = None
image_processor_class: Optional[str] = None
feature_extractor_class: Optional[str] = None
processor_class: Optional[str] = None
def __post_init__(self):
if self.model_type is None:
self.model_type = self.model_name.lower().replace(" ", "-")
if self.model_lower_cased is None:
self.model_lower_cased = self.model_name.lower().replace(" ", "_").replace("-", "_")
if self.model_camel_cased is None:
# Split the model name on - and space
words = self.model_name.split(" ")
words = list(chain(*[w.split("-") for w in words]))
# Make sure each word is capitalized
words = [w[0].upper() + w[1:] for w in words]
self.model_camel_cased = "".join(words)
if self.model_upper_cased is None:
self.model_upper_cased = self.model_name.upper().replace(" ", "_").replace("-", "_")
if self.config_class is None:
self.config_class = f"{self.model_camel_cased}Config"
ATTRIBUTE_TO_PLACEHOLDER = {
"config_class": "[CONFIG_CLASS]",
"tokenizer_class": "[TOKENIZER_CLASS]",
"image_processor_class": "[IMAGE_PROCESSOR_CLASS]",
"feature_extractor_class": "[FEATURE_EXTRACTOR_CLASS]",
"processor_class": "[PROCESSOR_CLASS]",
"checkpoint": "[CHECKPOINT]",
"model_type": "[MODEL_TYPE]",
"model_upper_cased": "[MODEL_UPPER_CASED]",
"model_camel_cased": "[MODEL_CAMELCASED]",
"model_lower_cased": "[MODEL_LOWER_CASED]",
"model_name": "[MODEL_NAME]",
}
def is_empty_line(line: str) -> bool:
"""
Determines whether a line is empty or not.
"""
return len(line) == 0 or line.isspace()
def find_indent(line: str) -> int:
"""
Returns the number of spaces that start a line indent.
"""
search = re.search(r"^(\s*)(?:\S|$)", line)
if search is None:
return 0
return len(search.groups()[0])
def parse_module_content(content: str) -> List[str]:
"""
Parse the content of a module in the list of objects it defines.
Args:
content (`str`): The content to parse
Returns:
`List[str]`: The list of objects defined in the module.
"""
objects = []
current_object = []
lines = content.split("\n")
# Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this.
end_markers = [")", "]", "}", '"""']
for line in lines:
# End of an object
is_valid_object = len(current_object) > 0
if is_valid_object and len(current_object) == 1:
is_valid_object = not current_object[0].startswith("# Copied from")
if not is_empty_line(line) and find_indent(line) == 0 and is_valid_object:
# Closing parts should be included in current object
if line in end_markers:
current_object.append(line)
objects.append("\n".join(current_object))
current_object = []
else:
objects.append("\n".join(current_object))
current_object = [line]
else:
current_object.append(line)
# Add last object
if len(current_object) > 0:
objects.append("\n".join(current_object))
return objects
def extract_block(content: str, indent_level: int = 0) -> str:
"""Return the first block in `content` with the indent level `indent_level`.
The first line in `content` should be indented at `indent_level` level, otherwise an error will be thrown.
This method will immediately stop the search when a (non-empty) line with indent level less than `indent_level` is
encountered.
Args:
content (`str`): The content to parse
indent_level (`int`, *optional*, default to 0): The indent level of the blocks to search for
Returns:
`str`: The first block in `content` with the indent level `indent_level`.
"""
current_object = []
lines = content.split("\n")
# Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this.
end_markers = [")", "]", "}", '"""']
for idx, line in enumerate(lines):
if idx == 0 and indent_level > 0 and not is_empty_line(line) and find_indent(line) != indent_level:
raise ValueError(
f"When `indent_level > 0`, the first line in `content` should have indent level {indent_level}. Got "
f"{find_indent(line)} instead."
)
if find_indent(line) < indent_level and not is_empty_line(line):
break
# End of an object
is_valid_object = len(current_object) > 0
if (
not is_empty_line(line)
and not line.endswith(":")
and find_indent(line) == indent_level
and is_valid_object
):
# Closing parts should be included in current object
if line.lstrip() in end_markers:
current_object.append(line)
return "\n".join(current_object)
else:
current_object.append(line)
# Add last object
if len(current_object) > 0:
return "\n".join(current_object)
def add_content_to_text(
text: str,
content: str,
add_after: Optional[Union[str, Pattern]] = None,
add_before: Optional[Union[str, Pattern]] = None,
exact_match: bool = False,
) -> str:
"""
A utility to add some content inside a given text.
Args:
text (`str`): The text in which we want to insert some content.
content (`str`): The content to add.
add_after (`str` or `Pattern`):
The pattern to test on a line of `text`, the new content is added after the first instance matching it.
add_before (`str` or `Pattern`):
The pattern to test on a line of `text`, the new content is added before the first instance matching it.
exact_match (`bool`, *optional*, defaults to `False`):
A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`,
otherwise, if `add_after`/`add_before` is present in the line.
<Tip warning={true}>
The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided.
</Tip>
Returns:
`str`: The text with the new content added if a match was found.
"""
if add_after is None and add_before is None:
raise ValueError("You need to pass either `add_after` or `add_before`")
if add_after is not None and add_before is not None:
raise ValueError("You can't pass both `add_after` or `add_before`")
pattern = add_after if add_before is None else add_before
def this_is_the_line(line):
if isinstance(pattern, Pattern):
return pattern.search(line) is not None
elif exact_match:
return pattern == line
else:
return pattern in line
new_lines = []
for line in text.split("\n"):
if this_is_the_line(line):
if add_before is not None:
new_lines.append(content)
new_lines.append(line)
if add_after is not None:
new_lines.append(content)
else:
new_lines.append(line)
return "\n".join(new_lines)
def add_content_to_file(
file_name: Union[str, os.PathLike],
content: str,
add_after: Optional[Union[str, Pattern]] = None,
add_before: Optional[Union[str, Pattern]] = None,
exact_match: bool = False,
):
"""
A utility to add some content inside a given file.
Args:
file_name (`str` or `os.PathLike`): The name of the file in which we want to insert some content.
content (`str`): The content to add.
add_after (`str` or `Pattern`):
The pattern to test on a line of `text`, the new content is added after the first instance matching it.
add_before (`str` or `Pattern`):
The pattern to test on a line of `text`, the new content is added before the first instance matching it.
exact_match (`bool`, *optional*, defaults to `False`):
A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`,
otherwise, if `add_after`/`add_before` is present in the line.
<Tip warning={true}>
The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided.
</Tip>
"""
with open(file_name, "r", encoding="utf-8") as f:
old_content = f.read()
new_content = add_content_to_text(
old_content, content, add_after=add_after, add_before=add_before, exact_match=exact_match
)
with open(file_name, "w", encoding="utf-8") as f:
f.write(new_content)
def replace_model_patterns(
text: str, old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns
) -> Tuple[str, str]:
"""
Replace all patterns present in a given text.
Args:
text (`str`): The text to treat.
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
Returns:
`Tuple(str, str)`: A tuple of with the treated text and the replacement actually done in it.
"""
# The order is crucially important as we will check and replace in that order. For instance the config probably
# contains the camel-cased named, but will be treated before.
attributes_to_check = ["config_class"]
# Add relevant preprocessing classes
for attr in ["tokenizer_class", "image_processor_class", "feature_extractor_class", "processor_class"]:
if getattr(old_model_patterns, attr) is not None and getattr(new_model_patterns, attr) is not None:
attributes_to_check.append(attr)
# Special cases for checkpoint and model_type
if old_model_patterns.checkpoint not in [old_model_patterns.model_type, old_model_patterns.model_lower_cased]:
attributes_to_check.append("checkpoint")
if old_model_patterns.model_type != old_model_patterns.model_lower_cased:
attributes_to_check.append("model_type")
else:
text = re.sub(
rf'(\s*)model_type = "{old_model_patterns.model_type}"',
r'\1model_type = "[MODEL_TYPE]"',
text,
)
# Special case when the model camel cased and upper cased names are the same for the old model (like for GPT2) but
# not the new one. We can't just do a replace in all the text and will need a special regex
if old_model_patterns.model_upper_cased == old_model_patterns.model_camel_cased:
old_model_value = old_model_patterns.model_upper_cased
if re.search(rf"{old_model_value}_[A-Z_]*[^A-Z_]", text) is not None:
text = re.sub(rf"{old_model_value}([A-Z_]*)([^a-zA-Z_])", r"[MODEL_UPPER_CASED]\1\2", text)
else:
attributes_to_check.append("model_upper_cased")
attributes_to_check.extend(["model_camel_cased", "model_lower_cased", "model_name"])
# Now let's replace every other attribute by their placeholder
for attr in attributes_to_check:
text = text.replace(getattr(old_model_patterns, attr), ATTRIBUTE_TO_PLACEHOLDER[attr])
# Finally we can replace the placeholder byt the new values.
replacements = []
for attr, placeholder in ATTRIBUTE_TO_PLACEHOLDER.items():
if placeholder in text:
replacements.append((getattr(old_model_patterns, attr), getattr(new_model_patterns, attr)))
text = text.replace(placeholder, getattr(new_model_patterns, attr))
# If we have two inconsistent replacements, we don't return anything (ex: GPT2->GPT_NEW and GPT2->GPTNew)
old_replacement_values = [old for old, new in replacements]
if len(set(old_replacement_values)) != len(old_replacement_values):
return text, ""
replacements = simplify_replacements(replacements)
replacements = [f"{old}->{new}" for old, new in replacements]
return text, ",".join(replacements)
def simplify_replacements(replacements):
"""
Simplify a list of replacement patterns to make sure there are no needless ones.
For instance in the sequence "Bert->BertNew, BertConfig->BertNewConfig, bert->bert_new", the replacement
"BertConfig->BertNewConfig" is implied by "Bert->BertNew" so not needed.
Args:
replacements (`List[Tuple[str, str]]`): List of patterns (old, new)
Returns:
`List[Tuple[str, str]]`: The list of patterns simplified.
"""
if len(replacements) <= 1:
# Nothing to simplify
return replacements
# Next let's sort replacements by length as a replacement can only "imply" another replacement if it's shorter.
replacements.sort(key=lambda x: len(x[0]))
idx = 0
while idx < len(replacements):
old, new = replacements[idx]
# Loop through all replacements after
j = idx + 1
while j < len(replacements):
old_2, new_2 = replacements[j]
# If the replacement is implied by the current one, we can drop it.
if old_2.replace(old, new) == new_2:
replacements.pop(j)
else:
j += 1
idx += 1
return replacements
def get_module_from_file(module_file: Union[str, os.PathLike]) -> str:
"""
Returns the module name corresponding to a module file.
"""
full_module_path = Path(module_file).absolute()
module_parts = full_module_path.with_suffix("").parts
# Find the first part named transformers, starting from the end.
idx = len(module_parts) - 1
while idx >= 0 and module_parts[idx] != "transformers":
idx -= 1
if idx < 0:
raise ValueError(f"{module_file} is not a transformers module.")
return ".".join(module_parts[idx:])
SPECIAL_PATTERNS = {
"_CHECKPOINT_FOR_DOC =": "checkpoint",
"_CONFIG_FOR_DOC =": "config_class",
"_TOKENIZER_FOR_DOC =": "tokenizer_class",
"_IMAGE_PROCESSOR_FOR_DOC =": "image_processor_class",
"_FEAT_EXTRACTOR_FOR_DOC =": "feature_extractor_class",
"_PROCESSOR_FOR_DOC =": "processor_class",
}
_re_class_func = re.compile(r"^(?:class|def)\s+([^\s:\(]+)\s*(?:\(|\:)", flags=re.MULTILINE)
def remove_attributes(obj, target_attr):
"""Remove `target_attr` in `obj`."""
lines = obj.split(os.linesep)
target_idx = None
for idx, line in enumerate(lines):
# search for assignment
if line.lstrip().startswith(f"{target_attr} = "):
target_idx = idx
break
# search for function/method definition
elif line.lstrip().startswith(f"def {target_attr}("):
target_idx = idx
break
# target not found
if target_idx is None:
return obj
line = lines[target_idx]
indent_level = find_indent(line)
# forward pass to find the ending of the block (including empty lines)
parsed = extract_block("\n".join(lines[target_idx:]), indent_level)
num_lines = len(parsed.split("\n"))
for idx in range(num_lines):
lines[target_idx + idx] = None
# backward pass to find comments or decorator
for idx in range(target_idx - 1, -1, -1):
line = lines[idx]
if (line.lstrip().startswith("#") or line.lstrip().startswith("@")) and find_indent(line) == indent_level:
lines[idx] = None
else:
break
new_obj = os.linesep.join([x for x in lines if x is not None])
return new_obj
def duplicate_module(
module_file: Union[str, os.PathLike],
old_model_patterns: ModelPatterns,
new_model_patterns: ModelPatterns,
dest_file: Optional[str] = None,
add_copied_from: bool = True,
attrs_to_remove: List[str] = None,
):
"""
Create a new module from an existing one and adapting all function and classes names from old patterns to new ones.
Args:
module_file (`str` or `os.PathLike`): Path to the module to duplicate.
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
dest_file (`str` or `os.PathLike`, *optional*): Path to the new module.
add_copied_from (`bool`, *optional*, defaults to `True`):
Whether or not to add `# Copied from` statements in the duplicated module.
"""
if dest_file is None:
dest_file = str(module_file).replace(
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
)
with open(module_file, "r", encoding="utf-8") as f:
content = f.read()
content = re.sub(r"# Copyright (\d+)\s", f"# Copyright {CURRENT_YEAR} ", content)
objects = parse_module_content(content)
# Loop and treat all objects
new_objects = []
for obj in objects:
# Special cases
if "PRETRAINED_CONFIG_ARCHIVE_MAP = {" in obj:
# docstyle-ignore
obj = (
f"{new_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP = "
+ "{"
+ f"""
"{new_model_patterns.checkpoint}": "https://huggingface.co/{new_model_patterns.checkpoint}/resolve/main/config.json",
"""
+ "}\n"
)
new_objects.append(obj)
continue
elif "PRETRAINED_MODEL_ARCHIVE_LIST = [" in obj:
if obj.startswith("TF_"):
prefix = "TF_"
elif obj.startswith("FLAX_"):
prefix = "FLAX_"
else:
prefix = ""
# docstyle-ignore
obj = f"""{prefix}{new_model_patterns.model_upper_cased}_PRETRAINED_MODEL_ARCHIVE_LIST = [
"{new_model_patterns.checkpoint}",
# See all {new_model_patterns.model_name} models at https://huggingface.co/models?filter={new_model_patterns.model_type}
]
"""
new_objects.append(obj)
continue
special_pattern = False
for pattern, attr in SPECIAL_PATTERNS.items():
if pattern in obj:
obj = obj.replace(getattr(old_model_patterns, attr), getattr(new_model_patterns, attr))
new_objects.append(obj)
special_pattern = True
break
if special_pattern:
continue
# Regular classes functions
old_obj = obj
obj, replacement = replace_model_patterns(obj, old_model_patterns, new_model_patterns)
has_copied_from = re.search(r"^#\s+Copied from", obj, flags=re.MULTILINE) is not None
if add_copied_from and not has_copied_from and _re_class_func.search(obj) is not None and len(replacement) > 0:
# Copied from statement must be added just before the class/function definition, which may not be the
# first line because of decorators.
module_name = get_module_from_file(module_file)
old_object_name = _re_class_func.search(old_obj).groups()[0]
obj = add_content_to_text(
obj, f"# Copied from {module_name}.{old_object_name} with {replacement}", add_before=_re_class_func
)
# In all cases, we remove Copied from statement with indent on methods.
obj = re.sub("\n[ ]+# Copied from [^\n]*\n", "\n", obj)
new_objects.append(obj)
content = "\n".join(new_objects)
# Remove some attributes that we don't want to copy to the new file(s)
if attrs_to_remove is not None:
for attr in attrs_to_remove:
content = remove_attributes(content, target_attr=attr)
with open(dest_file, "w", encoding="utf-8") as f:
f.write(content)
def filter_framework_files(
files: List[Union[str, os.PathLike]], frameworks: Optional[List[str]] = None
) -> List[Union[str, os.PathLike]]:
"""
Filter a list of files to only keep the ones corresponding to a list of frameworks.
Args:
files (`List[Union[str, os.PathLike]]`): The list of files to filter.
frameworks (`List[str]`, *optional*): The list of allowed frameworks.
Returns:
`List[Union[str, os.PathLike]]`: The list of filtered files.
"""
if frameworks is None:
frameworks = get_default_frameworks()
framework_to_file = {}
others = []
for f in files:
parts = Path(f).name.split("_")
if "modeling" not in parts:
others.append(f)
continue
if "tf" in parts:
framework_to_file["tf"] = f
elif "flax" in parts:
framework_to_file["flax"] = f
else:
framework_to_file["pt"] = f
return [framework_to_file[f] for f in frameworks if f in framework_to_file] + others
def get_model_files(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, Union[Path, List[Path]]]:
"""
Retrieves all the files associated to a model.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
frameworks (`List[str]`, *optional*):
If passed, will only keep the model files corresponding to the passed frameworks.
Returns:
`Dict[str, Union[Path, List[Path]]]`: A dictionary with the following keys:
- **doc_file** -- The documentation file for the model.
- **model_files** -- All the files in the model module.
- **test_files** -- The test files for the model.
"""
module_name = model_type_to_module_name(model_type)
model_module = TRANSFORMERS_PATH / "models" / module_name
model_files = list(model_module.glob("*.py"))
model_files = filter_framework_files(model_files, frameworks=frameworks)
doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{model_type}.md"
# Basic pattern for test files
test_files = [
f"test_modeling_{module_name}.py",
f"test_modeling_tf_{module_name}.py",
f"test_modeling_flax_{module_name}.py",
f"test_tokenization_{module_name}.py",
f"test_image_processing_{module_name}.py",
f"test_feature_extraction_{module_name}.py",
f"test_processor_{module_name}.py",
]
test_files = filter_framework_files(test_files, frameworks=frameworks)
# Add the test directory
test_files = [REPO_PATH / "tests" / "models" / module_name / f for f in test_files]
# Filter by existing files
test_files = [f for f in test_files if f.exists()]
return {"doc_file": doc_file, "model_files": model_files, "module_name": module_name, "test_files": test_files}
_re_checkpoint_for_doc = re.compile(r"^_CHECKPOINT_FOR_DOC\s+=\s+(\S*)\s*$", flags=re.MULTILINE)
def find_base_model_checkpoint(
model_type: str, model_files: Optional[Dict[str, Union[Path, List[Path]]]] = None
) -> str:
"""
Finds the model checkpoint used in the docstrings for a given model.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
model_files (`Dict[str, Union[Path, List[Path]]`, *optional*):
The files associated to `model_type`. Can be passed to speed up the function, otherwise will be computed.
Returns:
`str`: The checkpoint used.
"""
if model_files is None:
model_files = get_model_files(model_type)
module_files = model_files["model_files"]
for fname in module_files:
if "modeling" not in str(fname):
continue
with open(fname, "r", encoding="utf-8") as f:
content = f.read()
if _re_checkpoint_for_doc.search(content) is not None:
checkpoint = _re_checkpoint_for_doc.search(content).groups()[0]
# Remove quotes
checkpoint = checkpoint.replace('"', "")
checkpoint = checkpoint.replace("'", "")
return checkpoint
# TODO: Find some kind of fallback if there is no _CHECKPOINT_FOR_DOC in any of the modeling file.
return ""
def get_default_frameworks():
"""
Returns the list of frameworks (PyTorch, TensorFlow, Flax) that are installed in the environment.
"""
frameworks = []
if is_torch_available():
frameworks.append("pt")
if is_tf_available():
frameworks.append("tf")
if is_flax_available():
frameworks.append("flax")
return frameworks
_re_model_mapping = re.compile("MODEL_([A-Z_]*)MAPPING_NAMES")
def retrieve_model_classes(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, List[str]]:
"""
Retrieve the model classes associated to a given model.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
frameworks (`List[str]`, *optional*):
The frameworks to look for. Will default to `["pt", "tf", "flax"]`, passing a smaller list will restrict
the classes returned.
Returns:
`Dict[str, List[str]]`: A dictionary with one key per framework and the list of model classes associated to
that framework as values.
"""
if frameworks is None:
frameworks = get_default_frameworks()
modules = {
"pt": auto_module.modeling_auto if is_torch_available() else None,
"tf": auto_module.modeling_tf_auto if is_tf_available() else None,
"flax": auto_module.modeling_flax_auto if is_flax_available() else None,
}
model_classes = {}
for framework in frameworks:
new_model_classes = []
if modules[framework] is None:
raise ValueError(f"You selected {framework} in the frameworks, but it is not installed.")
model_mappings = [attr for attr in dir(modules[framework]) if _re_model_mapping.search(attr) is not None]
for model_mapping_name in model_mappings:
model_mapping = getattr(modules[framework], model_mapping_name)
if model_type in model_mapping:
new_model_classes.append(model_mapping[model_type])
if len(new_model_classes) > 0:
# Remove duplicates
model_classes[framework] = list(set(new_model_classes))
return model_classes
def retrieve_info_for_model(model_type, frameworks: Optional[List[str]] = None):
"""
Retrieves all the information from a given model_type.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
frameworks (`List[str]`, *optional*):
If passed, will only keep the info corresponding to the passed frameworks.
Returns:
`Dict`: A dictionary with the following keys:
- **frameworks** (`List[str]`): The list of frameworks that back this model type.
- **model_classes** (`Dict[str, List[str]]`): The model classes implemented for that model type.
- **model_files** (`Dict[str, Union[Path, List[Path]]]`): The files associated with that model type.
- **model_patterns** (`ModelPatterns`): The various patterns for the model.
"""
if model_type not in auto_module.MODEL_NAMES_MAPPING:
raise ValueError(f"{model_type} is not a valid model type.")
model_name = auto_module.MODEL_NAMES_MAPPING[model_type]
config_class = auto_module.configuration_auto.CONFIG_MAPPING_NAMES[model_type]
archive_map = auto_module.configuration_auto.CONFIG_ARCHIVE_MAP_MAPPING_NAMES.get(model_type, None)
if model_type in auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES:
tokenizer_classes = auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES[model_type]
tokenizer_class = tokenizer_classes[0] if tokenizer_classes[0] is not None else tokenizer_classes[1]
else:
tokenizer_class = None
image_processor_class = auto_module.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES.get(model_type, None)
feature_extractor_class = auto_module.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES.get(model_type, None)
processor_class = auto_module.processing_auto.PROCESSOR_MAPPING_NAMES.get(model_type, None)
model_files = get_model_files(model_type, frameworks=frameworks)
model_camel_cased = config_class.replace("Config", "")
available_frameworks = []
for fname in model_files["model_files"]:
if "modeling_tf" in str(fname):
available_frameworks.append("tf")
elif "modeling_flax" in str(fname):
available_frameworks.append("flax")
elif "modeling" in str(fname):
available_frameworks.append("pt")
if frameworks is None:
frameworks = get_default_frameworks()
frameworks = [f for f in frameworks if f in available_frameworks]
model_classes = retrieve_model_classes(model_type, frameworks=frameworks)
# Retrieve model upper-cased name from the constant name of the pretrained archive map.
if archive_map is None:
model_upper_cased = model_camel_cased.upper()
else:
parts = archive_map.split("_")
idx = 0
while idx < len(parts) and parts[idx] != "PRETRAINED":
idx += 1
if idx < len(parts):
model_upper_cased = "_".join(parts[:idx])
else:
model_upper_cased = model_camel_cased.upper()
model_patterns = ModelPatterns(
model_name,
checkpoint=find_base_model_checkpoint(model_type, model_files=model_files),
model_type=model_type,
model_camel_cased=model_camel_cased,
model_lower_cased=model_files["module_name"],
model_upper_cased=model_upper_cased,
config_class=config_class,
tokenizer_class=tokenizer_class,
image_processor_class=image_processor_class,
feature_extractor_class=feature_extractor_class,
processor_class=processor_class,
)
return {
"frameworks": frameworks,
"model_classes": model_classes,
"model_files": model_files,
"model_patterns": model_patterns,
}
def clean_frameworks_in_init(
init_file: Union[str, os.PathLike], frameworks: Optional[List[str]] = None, keep_processing: bool = True
):
"""
Removes all the import lines that don't belong to a given list of frameworks or concern tokenizers/feature
extractors/image processors/processors in an init.
Args:
init_file (`str` or `os.PathLike`): The path to the init to treat.
frameworks (`List[str]`, *optional*):
If passed, this will remove all imports that are subject to a framework not in frameworks
keep_processing (`bool`, *optional*, defaults to `True`):
Whether or not to keep the preprocessing (tokenizer, feature extractor, image processor, processor) imports
in the init.
"""
if frameworks is None:
frameworks = get_default_frameworks()
names = {"pt": "torch"}
to_remove = [names.get(f, f) for f in ["pt", "tf", "flax"] if f not in frameworks]
if not keep_processing:
to_remove.extend(["sentencepiece", "tokenizers", "vision"])
if len(to_remove) == 0:
# Nothing to do
return
remove_pattern = "|".join(to_remove)
re_conditional_imports = re.compile(rf"^\s*if not is_({remove_pattern})_available\(\):\s*$")
re_try = re.compile(r"\s*try:")
re_else = re.compile(r"\s*else:")
re_is_xxx_available = re.compile(rf"is_({remove_pattern})_available")
with open(init_file, "r", encoding="utf-8") as f:
content = f.read()
lines = content.split("\n")
new_lines = []
idx = 0
while idx < len(lines):
# Conditional imports in try-except-else blocks
if (re_conditional_imports.search(lines[idx]) is not None) and (re_try.search(lines[idx - 1]) is not None):
# Remove the preceding `try:`
new_lines.pop()
idx += 1
# Iterate until `else:`
while is_empty_line(lines[idx]) or re_else.search(lines[idx]) is None:
idx += 1
idx += 1
indent = find_indent(lines[idx])
while find_indent(lines[idx]) >= indent or is_empty_line(lines[idx]):
idx += 1
# Remove the import from utils
elif re_is_xxx_available.search(lines[idx]) is not None:
line = lines[idx]
for framework in to_remove:
line = line.replace(f", is_{framework}_available", "")
line = line.replace(f"is_{framework}_available, ", "")
line = line.replace(f"is_{framework}_available,", "")
line = line.replace(f"is_{framework}_available", "")
if len(line.strip()) > 0:
new_lines.append(line)
idx += 1
# Otherwise we keep the line, except if it's a tokenizer import and we don't want to keep it.
elif keep_processing or (
re.search(r'^\s*"(tokenization|processing|feature_extraction|image_processing)', lines[idx]) is None
and re.search(r"^\s*from .(tokenization|processing|feature_extraction|image_processing)", lines[idx])
is None
):
new_lines.append(lines[idx])
idx += 1
else:
idx += 1
with open(init_file, "w", encoding="utf-8") as f:
f.write("\n".join(new_lines))
def add_model_to_main_init(
old_model_patterns: ModelPatterns,
new_model_patterns: ModelPatterns,
frameworks: Optional[List[str]] = None,
with_processing: bool = True,
):
"""
Add a model to the main init of Transformers.
Args:
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
frameworks (`List[str]`, *optional*):
If specified, only the models implemented in those frameworks will be added.
with_processsing (`bool`, *optional*, defaults to `True`):
Whether the tokenizer/feature extractor/processor of the model should also be added to the init or not.
"""
with open(TRANSFORMERS_PATH / "__init__.py", "r", encoding="utf-8") as f:
content = f.read()
lines = content.split("\n")
idx = 0
new_lines = []
framework = None
while idx < len(lines):
new_framework = False
if not is_empty_line(lines[idx]) and find_indent(lines[idx]) == 0:
framework = None
elif lines[idx].lstrip().startswith("if not is_torch_available"):
framework = "pt"
new_framework = True
elif lines[idx].lstrip().startswith("if not is_tf_available"):
framework = "tf"
new_framework = True
elif lines[idx].lstrip().startswith("if not is_flax_available"):
framework = "flax"
new_framework = True
if new_framework:
# For a new framework, we need to skip until the else: block to get where the imports are.
while lines[idx].strip() != "else:":
new_lines.append(lines[idx])
idx += 1
# Skip if we are in a framework not wanted.
if framework is not None and frameworks is not None and framework not in frameworks:
new_lines.append(lines[idx])
idx += 1
elif re.search(rf'models.{old_model_patterns.model_lower_cased}( |")', lines[idx]) is not None:
block = [lines[idx]]
indent = find_indent(lines[idx])
idx += 1
while find_indent(lines[idx]) > indent:
block.append(lines[idx])
idx += 1
if lines[idx].strip() in [")", "]", "],"]:
block.append(lines[idx])
idx += 1
block = "\n".join(block)
new_lines.append(block)
add_block = True
if not with_processing:
processing_classes = [
old_model_patterns.tokenizer_class,
old_model_patterns.image_processor_class,
old_model_patterns.feature_extractor_class,
old_model_patterns.processor_class,
]
# Only keep the ones that are not None
processing_classes = [c for c in processing_classes if c is not None]
for processing_class in processing_classes:
block = block.replace(f' "{processing_class}",', "")
block = block.replace(f', "{processing_class}"', "")
block = block.replace(f" {processing_class},", "")
block = block.replace(f", {processing_class}", "")
if processing_class in block:
add_block = False
if add_block:
new_lines.append(replace_model_patterns(block, old_model_patterns, new_model_patterns)[0])
else:
new_lines.append(lines[idx])
idx += 1
with open(TRANSFORMERS_PATH / "__init__.py", "w", encoding="utf-8") as f:
f.write("\n".join(new_lines))
def insert_tokenizer_in_auto_module(old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns):
"""
Add a tokenizer to the relevant mappings in the auto module.
Args:
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
"""
if old_model_patterns.tokenizer_class is None or new_model_patterns.tokenizer_class is None:
return
with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "r", encoding="utf-8") as f:
content = f.read()
lines = content.split("\n")
idx = 0
# First we get to the TOKENIZER_MAPPING_NAMES block.
while not lines[idx].startswith(" TOKENIZER_MAPPING_NAMES = OrderedDict("):
idx += 1
idx += 1
# That block will end at this prompt:
while not lines[idx].startswith("TOKENIZER_MAPPING = _LazyAutoMapping"):
# Either all the tokenizer block is defined on one line, in which case, it ends with "),"
if lines[idx].endswith(","):
block = lines[idx]
# Otherwise it takes several lines until we get to a "),"
else:
block = []
while not lines[idx].startswith(" ),"):
block.append(lines[idx])
idx += 1
block = "\n".join(block)
idx += 1
# If we find the model type and tokenizer class in that block, we have the old model tokenizer block
if f'"{old_model_patterns.model_type}"' in block and old_model_patterns.tokenizer_class in block:
break
new_block = block.replace(old_model_patterns.model_type, new_model_patterns.model_type)
new_block = new_block.replace(old_model_patterns.tokenizer_class, new_model_patterns.tokenizer_class)
new_lines = lines[:idx] + [new_block] + lines[idx:]
with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "w", encoding="utf-8") as f:
f.write("\n".join(new_lines))
AUTO_CLASSES_PATTERNS = {
"configuration_auto.py": [
' ("{model_type}", "{model_name}"),',
' ("{model_type}", "{config_class}"),',
' ("{model_type}", "{pretrained_archive_map}"),',
],
"feature_extraction_auto.py": [' ("{model_type}", "{feature_extractor_class}"),'],
"image_processing_auto.py": [' ("{model_type}", "{image_processor_class}"),'],
"modeling_auto.py": [' ("{model_type}", "{any_pt_class}"),'],
"modeling_tf_auto.py": [' ("{model_type}", "{any_tf_class}"),'],
"modeling_flax_auto.py": [' ("{model_type}", "{any_flax_class}"),'],
"processing_auto.py": [' ("{model_type}", "{processor_class}"),'],
}
def add_model_to_auto_classes(
old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, model_classes: Dict[str, List[str]]
):
"""
Add a model to the relevant mappings in the auto module.
Args:
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
model_classes (`Dict[str, List[str]]`): A dictionary framework to list of model classes implemented.
"""
for filename in AUTO_CLASSES_PATTERNS:
# Extend patterns with all model classes if necessary
new_patterns = []
for pattern in AUTO_CLASSES_PATTERNS[filename]:
if re.search("any_([a-z]*)_class", pattern) is not None:
framework = re.search("any_([a-z]*)_class", pattern).groups()[0]
if framework in model_classes:
new_patterns.extend(
[
pattern.replace("{" + f"any_{framework}_class" + "}", cls)
for cls in model_classes[framework]
]
)
elif "{config_class}" in pattern:
new_patterns.append(pattern.replace("{config_class}", old_model_patterns.config_class))
elif "{image_processor_class}" in pattern:
if (
old_model_patterns.image_processor_class is not None
and new_model_patterns.image_processor_class is not None
):
new_patterns.append(
pattern.replace("{image_processor_class}", old_model_patterns.image_processor_class)
)
elif "{feature_extractor_class}" in pattern:
if (
old_model_patterns.feature_extractor_class is not None
and new_model_patterns.feature_extractor_class is not None
):
new_patterns.append(
pattern.replace("{feature_extractor_class}", old_model_patterns.feature_extractor_class)
)
elif "{processor_class}" in pattern:
if old_model_patterns.processor_class is not None and new_model_patterns.processor_class is not None:
new_patterns.append(pattern.replace("{processor_class}", old_model_patterns.processor_class))
else:
new_patterns.append(pattern)
# Loop through all patterns.
for pattern in new_patterns:
full_name = TRANSFORMERS_PATH / "models" / "auto" / filename
old_model_line = pattern
new_model_line = pattern
for attr in ["model_type", "model_name"]:
old_model_line = old_model_line.replace("{" + attr + "}", getattr(old_model_patterns, attr))
new_model_line = new_model_line.replace("{" + attr + "}", getattr(new_model_patterns, attr))
if "pretrained_archive_map" in pattern:
old_model_line = old_model_line.replace(
"{pretrained_archive_map}", f"{old_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP"
)
new_model_line = new_model_line.replace(
"{pretrained_archive_map}", f"{new_model_patterns.model_upper_cased}_PRETRAINED_CONFIG_ARCHIVE_MAP"
)
new_model_line = new_model_line.replace(
old_model_patterns.model_camel_cased, new_model_patterns.model_camel_cased
)
add_content_to_file(full_name, new_model_line, add_after=old_model_line)
# Tokenizers require special handling
insert_tokenizer_in_auto_module(old_model_patterns, new_model_patterns)
DOC_OVERVIEW_TEMPLATE = """## Overview
The {model_name} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
<INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
"""
def duplicate_doc_file(
doc_file: Union[str, os.PathLike],
old_model_patterns: ModelPatterns,
new_model_patterns: ModelPatterns,
dest_file: Optional[Union[str, os.PathLike]] = None,
frameworks: Optional[List[str]] = None,
):
"""
Duplicate a documentation file and adapts it for a new model.
Args:
module_file (`str` or `os.PathLike`): Path to the doc file to duplicate.
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
dest_file (`str` or `os.PathLike`, *optional*): Path to the new doc file.
Will default to the a file named `{new_model_patterns.model_type}.md` in the same folder as `module_file`.
frameworks (`List[str]`, *optional*):
If passed, will only keep the model classes corresponding to this list of frameworks in the new doc file.
"""
with open(doc_file, "r", encoding="utf-8") as f:
content = f.read()
content = re.sub(r"<!--\s*Copyright (\d+)\s", f"<!--Copyright {CURRENT_YEAR} ", content)
if frameworks is None:
frameworks = get_default_frameworks()
if dest_file is None:
dest_file = Path(doc_file).parent / f"{new_model_patterns.model_type}.md"
# Parse the doc file in blocks. One block per section/header
lines = content.split("\n")
blocks = []
current_block = []
for line in lines:
if line.startswith("#"):
blocks.append("\n".join(current_block))
current_block = [line]
else:
current_block.append(line)
blocks.append("\n".join(current_block))
new_blocks = []
in_classes = False
for block in blocks:
# Copyright
if not block.startswith("#"):
new_blocks.append(block)
# Main title
elif re.search(r"^#\s+\S+", block) is not None:
new_blocks.append(f"# {new_model_patterns.model_name}\n")
# The config starts the part of the doc with the classes.
elif not in_classes and old_model_patterns.config_class in block.split("\n")[0]:
in_classes = True
new_blocks.append(DOC_OVERVIEW_TEMPLATE.format(model_name=new_model_patterns.model_name))
new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns)
new_blocks.append(new_block)
# In classes
elif in_classes:
in_classes = True
block_title = block.split("\n")[0]
block_class = re.search(r"^#+\s+(\S.*)$", block_title).groups()[0]
new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns)
if "Tokenizer" in block_class:
# We only add the tokenizer if necessary
if old_model_patterns.tokenizer_class != new_model_patterns.tokenizer_class:
new_blocks.append(new_block)
elif "ImageProcessor" in block_class:
# We only add the image processor if necessary
if old_model_patterns.image_processor_class != new_model_patterns.image_processor_class:
new_blocks.append(new_block)
elif "FeatureExtractor" in block_class:
# We only add the feature extractor if necessary
if old_model_patterns.feature_extractor_class != new_model_patterns.feature_extractor_class:
new_blocks.append(new_block)
elif "Processor" in block_class:
# We only add the processor if necessary
if old_model_patterns.processor_class != new_model_patterns.processor_class:
new_blocks.append(new_block)
elif block_class.startswith("Flax"):
# We only add Flax models if in the selected frameworks
if "flax" in frameworks:
new_blocks.append(new_block)
elif block_class.startswith("TF"):
# We only add TF models if in the selected frameworks
if "tf" in frameworks:
new_blocks.append(new_block)
elif len(block_class.split(" ")) == 1:
# We only add PyTorch models if in the selected frameworks
if "pt" in frameworks:
new_blocks.append(new_block)
else:
new_blocks.append(new_block)
with open(dest_file, "w", encoding="utf-8") as f:
f.write("\n".join(new_blocks))
def insert_model_in_doc_toc(old_model_patterns, new_model_patterns):
"""
Insert the new model in the doc TOC, in the same section as the old model.
Args:
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
"""
toc_file = REPO_PATH / "docs" / "source" / "en" / "_toctree.yml"
with open(toc_file, "r", encoding="utf8") as f:
content = yaml.safe_load(f)
# Get to the model API doc
api_idx = 0
while content[api_idx]["title"] != "API":
api_idx += 1
api_doc = content[api_idx]["sections"]
model_idx = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
model_doc = api_doc[model_idx]["sections"]
# Find the base model in the Toc
old_model_type = old_model_patterns.model_type
section_idx = 0
while section_idx < len(model_doc):
sections = [entry["local"] for entry in model_doc[section_idx]["sections"]]
if f"model_doc/{old_model_type}" in sections:
break
section_idx += 1
if section_idx == len(model_doc):
old_model = old_model_patterns.model_name
new_model = new_model_patterns.model_name
print(f"Did not find {old_model} in the table of content, so you will need to add {new_model} manually.")
return
# Add the new model in the same toc
toc_entry = {"local": f"model_doc/{new_model_patterns.model_type}", "title": new_model_patterns.model_name}
model_doc[section_idx]["sections"].append(toc_entry)
model_doc[section_idx]["sections"] = sorted(model_doc[section_idx]["sections"], key=lambda s: s["title"].lower())
api_doc[model_idx]["sections"] = model_doc
content[api_idx]["sections"] = api_doc
with open(toc_file, "w", encoding="utf-8") as f:
f.write(yaml.dump(content, allow_unicode=True))
def create_new_model_like(
model_type: str,
new_model_patterns: ModelPatterns,
add_copied_from: bool = True,
frameworks: Optional[List[str]] = None,
old_checkpoint: Optional[str] = None,
):
"""
Creates a new model module like a given model of the Transformers library.
Args:
model_type (`str`): The model type to duplicate (like "bert" or "gpt2")
new_model_patterns (`ModelPatterns`): The patterns for the new model.
add_copied_from (`bool`, *optional*, defaults to `True`):
Whether or not to add "Copied from" statements to all classes in the new model modeling files.
frameworks (`List[str]`, *optional*):
If passed, will limit the duplicate to the frameworks specified.
old_checkpoint (`str`, *optional*):
The name of the base checkpoint for the old model. Should be passed along when it can't be automatically
recovered from the `model_type`.
"""
# Retrieve all the old model info.
model_info = retrieve_info_for_model(model_type, frameworks=frameworks)
model_files = model_info["model_files"]
old_model_patterns = model_info["model_patterns"]
if old_checkpoint is not None:
old_model_patterns.checkpoint = old_checkpoint
if len(old_model_patterns.checkpoint) == 0:
raise ValueError(
"The old model checkpoint could not be recovered from the model type. Please pass it to the "
"`old_checkpoint` argument."
)
keep_old_processing = True
for processing_attr in ["image_processor_class", "feature_extractor_class", "processor_class", "tokenizer_class"]:
if getattr(old_model_patterns, processing_attr) != getattr(new_model_patterns, processing_attr):
keep_old_processing = False
model_classes = model_info["model_classes"]
# 1. We create the module for our new model.
old_module_name = model_files["module_name"]
module_folder = TRANSFORMERS_PATH / "models" / new_model_patterns.model_lower_cased
os.makedirs(module_folder, exist_ok=True)
files_to_adapt = model_files["model_files"]
if keep_old_processing:
files_to_adapt = [
f
for f in files_to_adapt
if "tokenization" not in str(f)
and "processing" not in str(f)
and "feature_extraction" not in str(f)
and "image_processing" not in str(f)
]
os.makedirs(module_folder, exist_ok=True)
for module_file in files_to_adapt:
new_module_name = module_file.name.replace(
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
)
dest_file = module_folder / new_module_name
duplicate_module(
module_file,
old_model_patterns,
new_model_patterns,
dest_file=dest_file,
add_copied_from=add_copied_from and "modeling" in new_module_name,
)
clean_frameworks_in_init(
module_folder / "__init__.py", frameworks=frameworks, keep_processing=not keep_old_processing
)
# 2. We add our new model to the models init and the main init
add_content_to_file(
TRANSFORMERS_PATH / "models" / "__init__.py",
f" {new_model_patterns.model_lower_cased},",
add_after=f" {old_module_name},",
exact_match=True,
)
add_model_to_main_init(
old_model_patterns, new_model_patterns, frameworks=frameworks, with_processing=not keep_old_processing
)
# 3. Add test files
files_to_adapt = model_files["test_files"]
if keep_old_processing:
files_to_adapt = [
f
for f in files_to_adapt
if "tokenization" not in str(f)
and "processor" not in str(f)
and "feature_extraction" not in str(f)
and "image_processing" not in str(f)
]
def disable_fx_test(filename: Path) -> bool:
with open(filename) as fp:
content = fp.read()
new_content = re.sub(r"fx_compatible\s*=\s*True", "fx_compatible = False", content)
with open(filename, "w") as fp:
fp.write(new_content)
return content != new_content
disabled_fx_test = False
tests_folder = REPO_PATH / "tests" / "models" / new_model_patterns.model_lower_cased
os.makedirs(tests_folder, exist_ok=True)
with open(tests_folder / "__init__.py", "w"):
pass
for test_file in files_to_adapt:
new_test_file_name = test_file.name.replace(
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
)
dest_file = test_file.parent.parent / new_model_patterns.model_lower_cased / new_test_file_name
duplicate_module(
test_file,
old_model_patterns,
new_model_patterns,
dest_file=dest_file,
add_copied_from=False,
attrs_to_remove=["pipeline_model_mapping", "is_pipeline_test_to_skip"],
)
disabled_fx_test = disabled_fx_test | disable_fx_test(dest_file)
if disabled_fx_test:
print(
"The tests for symbolic tracing with torch.fx were disabled, you can add those once symbolic tracing works"
" for your new model."
)
# 4. Add model to auto classes
add_model_to_auto_classes(old_model_patterns, new_model_patterns, model_classes)
# 5. Add doc file
doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{old_model_patterns.model_type}.md"
duplicate_doc_file(doc_file, old_model_patterns, new_model_patterns, frameworks=frameworks)
insert_model_in_doc_toc(old_model_patterns, new_model_patterns)
# 6. Warn the user for duplicate patterns
if old_model_patterns.model_type == old_model_patterns.checkpoint:
print(
"The model you picked has the same name for the model type and the checkpoint name "
f"({old_model_patterns.model_type}). As a result, it's possible some places where the new checkpoint "
f"should be, you have {new_model_patterns.model_type} instead. You should search for all instances of "
f"{new_model_patterns.model_type} in the new files and check they're not badly used as checkpoints."
)
elif old_model_patterns.model_lower_cased == old_model_patterns.checkpoint:
print(
"The model you picked has the same name for the model type and the checkpoint name "
f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new "
f"checkpoint should be, you have {new_model_patterns.model_lower_cased} instead. You should search for "
f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly "
"used as checkpoints."
)
if (
old_model_patterns.model_type == old_model_patterns.model_lower_cased
and new_model_patterns.model_type != new_model_patterns.model_lower_cased
):
print(
"The model you picked has the same name for the model type and the lowercased model name "
f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new "
f"model type should be, you have {new_model_patterns.model_lower_cased} instead. You should search for "
f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly "
"used as the model type."
)
if not keep_old_processing and old_model_patterns.tokenizer_class is not None:
print(
"The constants at the start of the new tokenizer file created needs to be manually fixed. If your new "
"model has a tokenizer fast, you will also need to manually add the converter in the "
"`SLOW_TO_FAST_CONVERTERS` constant of `convert_slow_tokenizer.py`."
)
def add_new_model_like_command_factory(args: Namespace):
return AddNewModelLikeCommand(config_file=args.config_file, path_to_repo=args.path_to_repo)
class AddNewModelLikeCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
add_new_model_like_parser = parser.add_parser("add-new-model-like")
add_new_model_like_parser.add_argument(
"--config_file", type=str, help="A file with all the information for this model creation."
)
add_new_model_like_parser.add_argument(
"--path_to_repo", type=str, help="When not using an editable install, the path to the Transformers repo."
)
add_new_model_like_parser.set_defaults(func=add_new_model_like_command_factory)
def __init__(self, config_file=None, path_to_repo=None, *args):
if config_file is not None:
with open(config_file, "r", encoding="utf-8") as f:
config = json.load(f)
self.old_model_type = config["old_model_type"]
self.model_patterns = ModelPatterns(**config["new_model_patterns"])
self.add_copied_from = config.get("add_copied_from", True)
self.frameworks = config.get("frameworks", get_default_frameworks())
self.old_checkpoint = config.get("old_checkpoint", None)
else:
(
self.old_model_type,
self.model_patterns,
self.add_copied_from,
self.frameworks,
self.old_checkpoint,
) = get_user_input()
self.path_to_repo = path_to_repo
def run(self):
if self.path_to_repo is not None:
# Adapt constants
global TRANSFORMERS_PATH
global REPO_PATH
REPO_PATH = Path(self.path_to_repo)
TRANSFORMERS_PATH = REPO_PATH / "src" / "transformers"
create_new_model_like(
model_type=self.old_model_type,
new_model_patterns=self.model_patterns,
add_copied_from=self.add_copied_from,
frameworks=self.frameworks,
old_checkpoint=self.old_checkpoint,
)
def get_user_field(
question: str,
default_value: Optional[str] = None,
is_valid_answer: Optional[Callable] = None,
convert_to: Optional[Callable] = None,
fallback_message: Optional[str] = None,
) -> Any:
"""
A utility function that asks a question to the user to get an answer, potentially looping until it gets a valid
answer.
Args:
question (`str`): The question to ask the user.
default_value (`str`, *optional*): A potential default value that will be used when the answer is empty.
is_valid_answer (`Callable`, *optional*):
If set, the question will be asked until this function returns `True` on the provided answer.
convert_to (`Callable`, *optional*):
If set, the answer will be passed to this function. If this function raises an error on the procided
answer, the question will be asked again.
fallback_message (`str`, *optional*):
A message that will be displayed each time the question is asked again to the user.
Returns:
`Any`: The answer provided by the user (or the default), passed through the potential conversion function.
"""
if not question.endswith(" "):
question = question + " "
if default_value is not None:
question = f"{question} [{default_value}] "
valid_answer = False
while not valid_answer:
answer = input(question)
if default_value is not None and len(answer) == 0:
answer = default_value
if is_valid_answer is not None:
valid_answer = is_valid_answer(answer)
elif convert_to is not None:
try:
answer = convert_to(answer)
valid_answer = True
except Exception:
valid_answer = False
else:
valid_answer = True
if not valid_answer:
print(fallback_message)
return answer
def convert_to_bool(x: str) -> bool:
"""
Converts a string to a bool.
"""
if x.lower() in ["1", "y", "yes", "true"]:
return True
if x.lower() in ["0", "n", "no", "false"]:
return False
raise ValueError(f"{x} is not a value that can be converted to a bool.")
def get_user_input():
"""
Ask the user for the necessary inputs to add the new model.
"""
model_types = list(auto_module.configuration_auto.MODEL_NAMES_MAPPING.keys())
# Get old model type
valid_model_type = False
while not valid_model_type:
old_model_type = input(
"What is the model you would like to duplicate? Please provide the lowercase `model_type` (e.g. roberta): "
)
if old_model_type in model_types:
valid_model_type = True
else:
print(f"{old_model_type} is not a valid model type.")
near_choices = difflib.get_close_matches(old_model_type, model_types)
if len(near_choices) >= 1:
if len(near_choices) > 1:
near_choices = " or ".join(near_choices)
print(f"Did you mean {near_choices}?")
old_model_info = retrieve_info_for_model(old_model_type)
old_tokenizer_class = old_model_info["model_patterns"].tokenizer_class
old_image_processor_class = old_model_info["model_patterns"].image_processor_class
old_feature_extractor_class = old_model_info["model_patterns"].feature_extractor_class
old_processor_class = old_model_info["model_patterns"].processor_class
old_frameworks = old_model_info["frameworks"]
old_checkpoint = None
if len(old_model_info["model_patterns"].checkpoint) == 0:
old_checkpoint = get_user_field(
"We couldn't find the name of the base checkpoint for that model, please enter it here."
)
model_name = get_user_field(
"What is the name (with no special casing) for your new model in the paper (e.g. RoBERTa)? "
)
default_patterns = ModelPatterns(model_name, model_name)
model_type = get_user_field(
"What identifier would you like to use for the `model_type` of this model? ",
default_value=default_patterns.model_type,
)
model_lower_cased = get_user_field(
"What lowercase name would you like to use for the module (folder) of this model? ",
default_value=default_patterns.model_lower_cased,
)
model_camel_cased = get_user_field(
"What prefix (camel-cased) would you like to use for the model classes of this model (e.g. Roberta)? ",
default_value=default_patterns.model_camel_cased,
)
model_upper_cased = get_user_field(
"What prefix (upper-cased) would you like to use for the constants relative to this model? ",
default_value=default_patterns.model_upper_cased,
)
config_class = get_user_field(
"What will be the name of the config class for this model? ", default_value=f"{model_camel_cased}Config"
)
checkpoint = get_user_field(
"Please give a checkpoint identifier (on the model Hub) for this new model (e.g. facebook/roberta-base): "
)
old_processing_classes = [
c
for c in [old_image_processor_class, old_feature_extractor_class, old_tokenizer_class, old_processor_class]
if c is not None
]
old_processing_classes = ", ".join(old_processing_classes)
keep_processing = get_user_field(
f"Will your new model use the same processing class as {old_model_type} ({old_processing_classes}) (yes/no)? ",
convert_to=convert_to_bool,
fallback_message="Please answer yes/no, y/n, true/false or 1/0. ",
)
if keep_processing:
image_processor_class = old_image_processor_class
feature_extractor_class = old_feature_extractor_class
processor_class = old_processor_class
tokenizer_class = old_tokenizer_class
else:
if old_tokenizer_class is not None:
tokenizer_class = get_user_field(
"What will be the name of the tokenizer class for this model? ",
default_value=f"{model_camel_cased}Tokenizer",
)
else:
tokenizer_class = None
if old_image_processor_class is not None:
image_processor_class = get_user_field(
"What will be the name of the image processor class for this model? ",
default_value=f"{model_camel_cased}ImageProcessor",
)
else:
image_processor_class = None
if old_feature_extractor_class is not None:
feature_extractor_class = get_user_field(
"What will be the name of the feature extractor class for this model? ",
default_value=f"{model_camel_cased}FeatureExtractor",
)
else:
feature_extractor_class = None
if old_processor_class is not None:
processor_class = get_user_field(
"What will be the name of the processor class for this model? ",
default_value=f"{model_camel_cased}Processor",
)
else:
processor_class = None
model_patterns = ModelPatterns(
model_name,
checkpoint,
model_type=model_type,
model_lower_cased=model_lower_cased,
model_camel_cased=model_camel_cased,
model_upper_cased=model_upper_cased,
config_class=config_class,
tokenizer_class=tokenizer_class,
image_processor_class=image_processor_class,
feature_extractor_class=feature_extractor_class,
processor_class=processor_class,
)
add_copied_from = get_user_field(
"Should we add # Copied from statements when creating the new modeling file (yes/no)? ",
convert_to=convert_to_bool,
default_value="yes",
fallback_message="Please answer yes/no, y/n, true/false or 1/0.",
)
all_frameworks = get_user_field(
"Should we add a version of your new model in all the frameworks implemented by"
f" {old_model_type} ({old_frameworks}) (yes/no)? ",
convert_to=convert_to_bool,
default_value="yes",
fallback_message="Please answer yes/no, y/n, true/false or 1/0.",
)
if all_frameworks:
frameworks = None
else:
frameworks = get_user_field(
"Please enter the list of framworks you want (pt, tf, flax) separated by spaces",
is_valid_answer=lambda x: all(p in ["pt", "tf", "flax"] for p in x.split(" ")),
)
frameworks = list(set(frameworks.split(" ")))
return (old_model_type, model_patterns, add_copied_from, frameworks, old_checkpoint)
|