File size: 26,683 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import types
import warnings
from typing import List, Optional, Tuple, Union

import numpy as np

from ..models.bert.tokenization_bert import BasicTokenizer
from ..utils import (
    ExplicitEnum,
    add_end_docstrings,
    is_tf_available,
    is_torch_available,
)
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline, Dataset


if is_tf_available():
    import tensorflow as tf

    from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
if is_torch_available():
    from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES


class TokenClassificationArgumentHandler(ArgumentHandler):
    """
    Handles arguments for token classification.
    """

    def __call__(self, inputs: Union[str, List[str]], **kwargs):
        if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0:
            inputs = list(inputs)
            batch_size = len(inputs)
        elif isinstance(inputs, str):
            inputs = [inputs]
            batch_size = 1
        elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType):
            return inputs, None
        else:
            raise ValueError("At least one input is required.")

        offset_mapping = kwargs.get("offset_mapping")
        if offset_mapping:
            if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple):
                offset_mapping = [offset_mapping]
            if len(offset_mapping) != batch_size:
                raise ValueError("offset_mapping should have the same batch size as the input")
        return inputs, offset_mapping


class AggregationStrategy(ExplicitEnum):
    """All the valid aggregation strategies for TokenClassificationPipeline"""

    NONE = "none"
    SIMPLE = "simple"
    FIRST = "first"
    AVERAGE = "average"
    MAX = "max"


@add_end_docstrings(
    PIPELINE_INIT_ARGS,
    r"""
        ignore_labels (`List[str]`, defaults to `["O"]`):
            A list of labels to ignore.
        grouped_entities (`bool`, *optional*, defaults to `False`):
            DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the
            same entity together in the predictions or not.
        stride (`int`, *optional*):
            If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size
            model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The
            value of this argument defines the number of overlapping tokens between chunks. In other words, the model
            will shift forward by `tokenizer.model_max_length - stride` tokens each step.
        aggregation_strategy (`str`, *optional*, defaults to `"none"`):
            The strategy to fuse (or not) tokens based on the model prediction.

                - "none" : Will simply not do any aggregation and simply return raw results from the model
                - "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C,
                  I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D",
                  "entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as
                  different entities. On word based languages, we might end up splitting words undesirably : Imagine
                  Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity":
                  "NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages
                  that support that meaning, which is basically tokens separated by a space). These mitigations will
                  only work on real words, "New york" might still be tagged with two different entities.
                - "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
                  end up with different tags. Words will simply use the tag of the first token of the word when there
                  is ambiguity.
                - "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words,
                  cannot end up with different tags. scores will be averaged first across tokens, and then the maximum
                  label is applied.
                - "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot
                  end up with different tags. Word entity will simply be the token with the maximum score.
    """,
)
class TokenClassificationPipeline(ChunkPipeline):
    """
    Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition
    examples](../task_summary#named-entity-recognition) for more information.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple")
    >>> sentence = "Je m'appelle jean-baptiste et je vis à montréal"
    >>> tokens = token_classifier(sentence)
    >>> tokens
    [{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}]

    >>> token = tokens[0]
    >>> # Start and end provide an easy way to highlight words in the original text.
    >>> sentence[token["start"] : token["end"]]
    ' jean-baptiste'

    >>> # Some models use the same idea to do part of speech.
    >>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple")
    >>> syntaxer("My name is Sarah and I live in London")
    [{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}]
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous).

    The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the
    up-to-date list of available models on
    [huggingface.co/models](https://huggingface.co/models?filter=token-classification).
    """

    default_input_names = "sequences"

    def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.check_model_type(
            TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
            if self.framework == "tf"
            else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
        )

        self._basic_tokenizer = BasicTokenizer(do_lower_case=False)
        self._args_parser = args_parser

    def _sanitize_parameters(
        self,
        ignore_labels=None,
        grouped_entities: Optional[bool] = None,
        ignore_subwords: Optional[bool] = None,
        aggregation_strategy: Optional[AggregationStrategy] = None,
        offset_mapping: Optional[List[Tuple[int, int]]] = None,
        stride: Optional[int] = None,
    ):
        preprocess_params = {}
        if offset_mapping is not None:
            preprocess_params["offset_mapping"] = offset_mapping

        postprocess_params = {}
        if grouped_entities is not None or ignore_subwords is not None:
            if grouped_entities and ignore_subwords:
                aggregation_strategy = AggregationStrategy.FIRST
            elif grouped_entities and not ignore_subwords:
                aggregation_strategy = AggregationStrategy.SIMPLE
            else:
                aggregation_strategy = AggregationStrategy.NONE

            if grouped_entities is not None:
                warnings.warn(
                    "`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to"
                    f' `aggregation_strategy="{aggregation_strategy}"` instead.'
                )
            if ignore_subwords is not None:
                warnings.warn(
                    "`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to"
                    f' `aggregation_strategy="{aggregation_strategy}"` instead.'
                )

        if aggregation_strategy is not None:
            if isinstance(aggregation_strategy, str):
                aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()]
            if (
                aggregation_strategy
                in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE}
                and not self.tokenizer.is_fast
            ):
                raise ValueError(
                    "Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option"
                    ' to `"simple"` or use a fast tokenizer.'
                )
            postprocess_params["aggregation_strategy"] = aggregation_strategy
        if ignore_labels is not None:
            postprocess_params["ignore_labels"] = ignore_labels
        if stride is not None:
            if stride >= self.tokenizer.model_max_length:
                raise ValueError(
                    "`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)"
                )
            if aggregation_strategy == AggregationStrategy.NONE:
                raise ValueError(
                    "`stride` was provided to process all the text but `aggregation_strategy="
                    f'"{aggregation_strategy}"`, please select another one instead.'
                )
            else:
                if self.tokenizer.is_fast:
                    tokenizer_params = {
                        "return_overflowing_tokens": True,
                        "padding": True,
                        "stride": stride,
                    }
                    preprocess_params["tokenizer_params"] = tokenizer_params
                else:
                    raise ValueError(
                        "`stride` was provided to process all the text but you're using a slow tokenizer."
                        " Please use a fast tokenizer."
                    )
        return preprocess_params, {}, postprocess_params

    def __call__(self, inputs: Union[str, List[str]], **kwargs):
        """
        Classify each token of the text(s) given as inputs.

        Args:
            inputs (`str` or `List[str]`):
                One or several texts (or one list of texts) for token classification.

        Return:
            A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the
            corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with
            the following keys:

            - **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you
              want to have the exact string in the original sentence, use `start` and `end`.
            - **score** (`float`) -- The corresponding probability for `entity`.
            - **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when
              *aggregation_strategy* is not `"none"`.
            - **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding
              token in the sentence.
            - **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only
              exists if the offsets are available within the tokenizer
            - **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only
              exists if the offsets are available within the tokenizer
        """

        _inputs, offset_mapping = self._args_parser(inputs, **kwargs)
        if offset_mapping:
            kwargs["offset_mapping"] = offset_mapping

        return super().__call__(inputs, **kwargs)

    def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
        tokenizer_params = preprocess_params.pop("tokenizer_params", {})
        truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
        inputs = self.tokenizer(
            sentence,
            return_tensors=self.framework,
            truncation=truncation,
            return_special_tokens_mask=True,
            return_offsets_mapping=self.tokenizer.is_fast,
            **tokenizer_params,
        )
        inputs.pop("overflow_to_sample_mapping", None)
        num_chunks = len(inputs["input_ids"])

        for i in range(num_chunks):
            if self.framework == "tf":
                model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
            else:
                model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
            if offset_mapping is not None:
                model_inputs["offset_mapping"] = offset_mapping
            model_inputs["sentence"] = sentence if i == 0 else None
            model_inputs["is_last"] = i == num_chunks - 1

            yield model_inputs

    def _forward(self, model_inputs):
        # Forward
        special_tokens_mask = model_inputs.pop("special_tokens_mask")
        offset_mapping = model_inputs.pop("offset_mapping", None)
        sentence = model_inputs.pop("sentence")
        is_last = model_inputs.pop("is_last")
        if self.framework == "tf":
            logits = self.model(**model_inputs)[0]
        else:
            output = self.model(**model_inputs)
            logits = output["logits"] if isinstance(output, dict) else output[0]

        return {
            "logits": logits,
            "special_tokens_mask": special_tokens_mask,
            "offset_mapping": offset_mapping,
            "sentence": sentence,
            "is_last": is_last,
            **model_inputs,
        }

    def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None):
        if ignore_labels is None:
            ignore_labels = ["O"]
        all_entities = []
        for model_outputs in all_outputs:
            logits = model_outputs["logits"][0].numpy()
            sentence = all_outputs[0]["sentence"]
            input_ids = model_outputs["input_ids"][0]
            offset_mapping = (
                model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None
            )
            special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy()

            maxes = np.max(logits, axis=-1, keepdims=True)
            shifted_exp = np.exp(logits - maxes)
            scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)

            if self.framework == "tf":
                input_ids = input_ids.numpy()
                offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None

            pre_entities = self.gather_pre_entities(
                sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy
            )
            grouped_entities = self.aggregate(pre_entities, aggregation_strategy)
            # Filter anything that is in self.ignore_labels
            entities = [
                entity
                for entity in grouped_entities
                if entity.get("entity", None) not in ignore_labels
                and entity.get("entity_group", None) not in ignore_labels
            ]
            all_entities.extend(entities)
        num_chunks = len(all_outputs)
        if num_chunks > 1:
            all_entities = self.aggregate_overlapping_entities(all_entities)
        return all_entities

    def aggregate_overlapping_entities(self, entities):
        if len(entities) == 0:
            return entities
        entities = sorted(entities, key=lambda x: x["start"])
        aggregated_entities = []
        previous_entity = entities[0]
        for entity in entities:
            if previous_entity["start"] <= entity["start"] < previous_entity["end"]:
                current_length = entity["end"] - entity["start"]
                previous_length = previous_entity["end"] - previous_entity["start"]
                if current_length > previous_length:
                    previous_entity = entity
                elif current_length == previous_length and entity["score"] > previous_entity["score"]:
                    previous_entity = entity
            else:
                aggregated_entities.append(previous_entity)
                previous_entity = entity
        aggregated_entities.append(previous_entity)
        return aggregated_entities

    def gather_pre_entities(
        self,
        sentence: str,
        input_ids: np.ndarray,
        scores: np.ndarray,
        offset_mapping: Optional[List[Tuple[int, int]]],
        special_tokens_mask: np.ndarray,
        aggregation_strategy: AggregationStrategy,
    ) -> List[dict]:
        """Fuse various numpy arrays into dicts with all the information needed for aggregation"""
        pre_entities = []
        for idx, token_scores in enumerate(scores):
            # Filter special_tokens
            if special_tokens_mask[idx]:
                continue

            word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx]))
            if offset_mapping is not None:
                start_ind, end_ind = offset_mapping[idx]
                if not isinstance(start_ind, int):
                    if self.framework == "pt":
                        start_ind = start_ind.item()
                        end_ind = end_ind.item()
                word_ref = sentence[start_ind:end_ind]
                if getattr(self.tokenizer, "_tokenizer", None) and getattr(
                    self.tokenizer._tokenizer.model, "continuing_subword_prefix", None
                ):
                    # This is a BPE, word aware tokenizer, there is a correct way
                    # to fuse tokens
                    is_subword = len(word) != len(word_ref)
                else:
                    # This is a fallback heuristic. This will fail most likely on any kind of text + punctuation mixtures that will be considered "words". Non word aware models cannot do better than this unfortunately.
                    if aggregation_strategy in {
                        AggregationStrategy.FIRST,
                        AggregationStrategy.AVERAGE,
                        AggregationStrategy.MAX,
                    }:
                        warnings.warn(
                            "Tokenizer does not support real words, using fallback heuristic",
                            UserWarning,
                        )
                    is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1]

                if int(input_ids[idx]) == self.tokenizer.unk_token_id:
                    word = word_ref
                    is_subword = False
            else:
                start_ind = None
                end_ind = None
                is_subword = False

            pre_entity = {
                "word": word,
                "scores": token_scores,
                "start": start_ind,
                "end": end_ind,
                "index": idx,
                "is_subword": is_subword,
            }
            pre_entities.append(pre_entity)
        return pre_entities

    def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]:
        if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}:
            entities = []
            for pre_entity in pre_entities:
                entity_idx = pre_entity["scores"].argmax()
                score = pre_entity["scores"][entity_idx]
                entity = {
                    "entity": self.model.config.id2label[entity_idx],
                    "score": score,
                    "index": pre_entity["index"],
                    "word": pre_entity["word"],
                    "start": pre_entity["start"],
                    "end": pre_entity["end"],
                }
                entities.append(entity)
        else:
            entities = self.aggregate_words(pre_entities, aggregation_strategy)

        if aggregation_strategy == AggregationStrategy.NONE:
            return entities
        return self.group_entities(entities)

    def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict:
        word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities])
        if aggregation_strategy == AggregationStrategy.FIRST:
            scores = entities[0]["scores"]
            idx = scores.argmax()
            score = scores[idx]
            entity = self.model.config.id2label[idx]
        elif aggregation_strategy == AggregationStrategy.MAX:
            max_entity = max(entities, key=lambda entity: entity["scores"].max())
            scores = max_entity["scores"]
            idx = scores.argmax()
            score = scores[idx]
            entity = self.model.config.id2label[idx]
        elif aggregation_strategy == AggregationStrategy.AVERAGE:
            scores = np.stack([entity["scores"] for entity in entities])
            average_scores = np.nanmean(scores, axis=0)
            entity_idx = average_scores.argmax()
            entity = self.model.config.id2label[entity_idx]
            score = average_scores[entity_idx]
        else:
            raise ValueError("Invalid aggregation_strategy")
        new_entity = {
            "entity": entity,
            "score": score,
            "word": word,
            "start": entities[0]["start"],
            "end": entities[-1]["end"],
        }
        return new_entity

    def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]:
        """
        Override tokens from a given word that disagree to force agreement on word boundaries.

        Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft|
        company| B-ENT I-ENT
        """
        if aggregation_strategy in {
            AggregationStrategy.NONE,
            AggregationStrategy.SIMPLE,
        }:
            raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation")

        word_entities = []
        word_group = None
        for entity in entities:
            if word_group is None:
                word_group = [entity]
            elif entity["is_subword"]:
                word_group.append(entity)
            else:
                word_entities.append(self.aggregate_word(word_group, aggregation_strategy))
                word_group = [entity]
        # Last item
        if word_group is not None:
            word_entities.append(self.aggregate_word(word_group, aggregation_strategy))
        return word_entities

    def group_sub_entities(self, entities: List[dict]) -> dict:
        """
        Group together the adjacent tokens with the same entity predicted.

        Args:
            entities (`dict`): The entities predicted by the pipeline.
        """
        # Get the first entity in the entity group
        entity = entities[0]["entity"].split("-")[-1]
        scores = np.nanmean([entity["score"] for entity in entities])
        tokens = [entity["word"] for entity in entities]

        entity_group = {
            "entity_group": entity,
            "score": np.mean(scores),
            "word": self.tokenizer.convert_tokens_to_string(tokens),
            "start": entities[0]["start"],
            "end": entities[-1]["end"],
        }
        return entity_group

    def get_tag(self, entity_name: str) -> Tuple[str, str]:
        if entity_name.startswith("B-"):
            bi = "B"
            tag = entity_name[2:]
        elif entity_name.startswith("I-"):
            bi = "I"
            tag = entity_name[2:]
        else:
            # It's not in B-, I- format
            # Default to I- for continuation.
            bi = "I"
            tag = entity_name
        return bi, tag

    def group_entities(self, entities: List[dict]) -> List[dict]:
        """
        Find and group together the adjacent tokens with the same entity predicted.

        Args:
            entities (`dict`): The entities predicted by the pipeline.
        """

        entity_groups = []
        entity_group_disagg = []

        for entity in entities:
            if not entity_group_disagg:
                entity_group_disagg.append(entity)
                continue

            # If the current entity is similar and adjacent to the previous entity,
            # append it to the disaggregated entity group
            # The split is meant to account for the "B" and "I" prefixes
            # Shouldn't merge if both entities are B-type
            bi, tag = self.get_tag(entity["entity"])
            last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"])

            if tag == last_tag and bi != "B":
                # Modify subword type to be previous_type
                entity_group_disagg.append(entity)
            else:
                # If the current entity is different from the previous entity
                # aggregate the disaggregated entity group
                entity_groups.append(self.group_sub_entities(entity_group_disagg))
                entity_group_disagg = [entity]
        if entity_group_disagg:
            # it's the last entity, add it to the entity groups
            entity_groups.append(self.group_sub_entities(entity_group_disagg))

        return entity_groups


NerPipeline = TokenClassificationPipeline