File size: 4,900 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union

import numpy as np

from ..utils import (
    add_end_docstrings,
    is_torch_available,
    is_vision_available,
    logging,
    requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline


if is_vision_available():
    from PIL import Image

    from ..image_utils import load_image

if is_torch_available():
    from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES

logger = logging.get_logger(__name__)


@add_end_docstrings(PIPELINE_INIT_ARGS)
class ImageToImagePipeline(Pipeline):
    """
    Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous
    image input.

    Example:

    ```python
    >>> from PIL import Image
    >>> import requests

    >>> from transformers import pipeline

    >>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64")
    >>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
    >>> img = img.resize((64, 64))
    >>> upscaled_img = upscaler(img)
    >>> img.size
    (64, 64)

    >>> upscaled_img.size
    (144, 144)
    ```

    This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"image-to-image"`.

    See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image).
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        requires_backends(self, "vision")
        self.check_model_type(MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES)

    def _sanitize_parameters(self, **kwargs):
        preprocess_params = {}
        postprocess_params = {}
        forward_params = {}

        if "timeout" in kwargs:
            preprocess_params["timeout"] = kwargs["timeout"]
        if "head_mask" in kwargs:
            forward_params["head_mask"] = kwargs["head_mask"]

        return preprocess_params, forward_params, postprocess_params

    def __call__(
        self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs
    ) -> Union["Image.Image", List["Image.Image"]]:
        """
        Transform the image(s) passed as inputs.

        Args:
            images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
                The pipeline handles three types of images:

                - A string containing a http link pointing to an image
                - A string containing a local path to an image
                - An image loaded in PIL directly

                The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
                Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
                images.
            timeout (`float`, *optional*, defaults to None):
                The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
                the call may block forever.

        Return:
            An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a
            single image, the return will be also a single image, if the input is a list of several images, it will
            return a list of transformed images.
        """
        return super().__call__(images, **kwargs)

    def _forward(self, model_inputs):
        model_outputs = self.model(**model_inputs)
        return model_outputs

    def preprocess(self, image, timeout=None):
        image = load_image(image, timeout=timeout)
        inputs = self.image_processor(images=[image], return_tensors="pt")
        return inputs

    def postprocess(self, model_outputs):
        images = []
        if "reconstruction" in model_outputs.keys():
            outputs = model_outputs.reconstruction
        for output in outputs:
            output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
            output = np.moveaxis(output, source=0, destination=-1)
            output = (output * 255.0).round().astype(np.uint8)  # float32 to uint8
            images.append(Image.fromarray(output))

        return images if len(images) > 1 else images[0]