File size: 23,306 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# coding=utf-8
# Copyright 2022 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ConvNext model."""


from __future__ import annotations

from typing import Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
    TFModelInputType,
    TFPreTrainedModel,
    TFSequenceClassificationLoss,
    get_initializer,
    keras_serializable,
    unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_convnext import ConvNextConfig


logger = logging.get_logger(__name__)


_CONFIG_FOR_DOC = "ConvNextConfig"
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"


class TFConvNextDropPath(tf.keras.layers.Layer):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    References:
        (1) github.com:rwightman/pytorch-image-models
    """

    def __init__(self, drop_path, **kwargs):
        super().__init__(**kwargs)
        self.drop_path = drop_path

    def call(self, x, training=None):
        if training:
            keep_prob = 1 - self.drop_path
            shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
            random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
            random_tensor = tf.floor(random_tensor)
            return (x / keep_prob) * random_tensor
        return x


class TFConvNextEmbeddings(tf.keras.layers.Layer):
    """This class is comparable to (and inspired by) the SwinEmbeddings class
    found in src/transformers/models/swin/modeling_swin.py.
    """

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.patch_embeddings = tf.keras.layers.Conv2D(
            filters=config.hidden_sizes[0],
            kernel_size=config.patch_size,
            strides=config.patch_size,
            name="patch_embeddings",
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
        )
        self.layernorm = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
        self.num_channels = config.num_channels

    def call(self, pixel_values):
        if isinstance(pixel_values, dict):
            pixel_values = pixel_values["pixel_values"]

        num_channels = shape_list(pixel_values)[1]
        if tf.executing_eagerly() and num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
            )

        # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
        # So change the input format from `NCHW` to `NHWC`.
        # shape = (batch_size, in_height, in_width, in_channels=num_channels)
        pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))

        embeddings = self.patch_embeddings(pixel_values)
        embeddings = self.layernorm(embeddings)
        return embeddings


class TFConvNextLayer(tf.keras.layers.Layer):
    """This corresponds to the `Block` class in the original implementation.

    There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
    H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back

    The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
    NHWC ordering, we can just apply the operations straight-away without the permutation.

    Args:
        config ([`ConvNextConfig`]): Model configuration class.
        dim (`int`): Number of input channels.
        drop_path (`float`): Stochastic depth rate. Default: 0.0.
    """

    def __init__(self, config, dim, drop_path=0.0, **kwargs):
        super().__init__(**kwargs)
        self.dim = dim
        self.config = config
        self.dwconv = tf.keras.layers.Conv2D(
            filters=dim,
            kernel_size=7,
            padding="same",
            groups=dim,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="dwconv",
        )  # depthwise conv
        self.layernorm = tf.keras.layers.LayerNormalization(
            epsilon=1e-6,
            name="layernorm",
        )
        self.pwconv1 = tf.keras.layers.Dense(
            units=4 * dim,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="pwconv1",
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = get_tf_activation(config.hidden_act)
        self.pwconv2 = tf.keras.layers.Dense(
            units=dim,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="pwconv2",
        )
        # Using `layers.Activation` instead of `tf.identity` to better control `training`
        # behaviour.
        self.drop_path = (
            TFConvNextDropPath(drop_path, name="drop_path")
            if drop_path > 0.0
            else tf.keras.layers.Activation("linear", name="drop_path")
        )

    def build(self, input_shape: tf.TensorShape = None):
        # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
        self.layer_scale_parameter = (
            self.add_weight(
                shape=(self.dim,),
                initializer=tf.keras.initializers.Constant(value=self.config.layer_scale_init_value),
                trainable=True,
                name="layer_scale_parameter",
            )
            if self.config.layer_scale_init_value > 0
            else None
        )
        super().build(input_shape)

    def call(self, hidden_states, training=False):
        input = hidden_states
        x = self.dwconv(hidden_states)
        x = self.layernorm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)

        if self.layer_scale_parameter is not None:
            x = self.layer_scale_parameter * x

        x = input + self.drop_path(x, training=training)
        return x


class TFConvNextStage(tf.keras.layers.Layer):
    """ConvNext stage, consisting of an optional downsampling layer + multiple residual blocks.

    Args:
        config ([`ConvNextConfig`]): Model configuration class.
        in_channels (`int`): Number of input channels.
        out_channels (`int`): Number of output channels.
        depth (`int`): Number of residual blocks.
        drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
    """

    def __init__(
        self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None, **kwargs
    ):
        super().__init__(**kwargs)
        if in_channels != out_channels or stride > 1:
            self.downsampling_layer = [
                tf.keras.layers.LayerNormalization(
                    epsilon=1e-6,
                    name="downsampling_layer.0",
                ),
                # Inputs to this layer will follow NHWC format since we
                # transposed the inputs from NCHW to NHWC in the `TFConvNextEmbeddings`
                # layer. All the outputs throughout the model will be in NHWC
                # from this point on until the output where we again change to
                # NCHW.
                tf.keras.layers.Conv2D(
                    filters=out_channels,
                    kernel_size=kernel_size,
                    strides=stride,
                    kernel_initializer=get_initializer(config.initializer_range),
                    bias_initializer="zeros",
                    name="downsampling_layer.1",
                ),
            ]
        else:
            self.downsampling_layer = [tf.identity]

        drop_path_rates = drop_path_rates or [0.0] * depth
        self.layers = [
            TFConvNextLayer(
                config,
                dim=out_channels,
                drop_path=drop_path_rates[j],
                name=f"layers.{j}",
            )
            for j in range(depth)
        ]

    def call(self, hidden_states):
        for layer in self.downsampling_layer:
            hidden_states = layer(hidden_states)
        for layer in self.layers:
            hidden_states = layer(hidden_states)
        return hidden_states


class TFConvNextEncoder(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.stages = []
        drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
        drop_path_rates = tf.split(drop_path_rates, config.depths)
        drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
        prev_chs = config.hidden_sizes[0]
        for i in range(config.num_stages):
            out_chs = config.hidden_sizes[i]
            stage = TFConvNextStage(
                config,
                in_channels=prev_chs,
                out_channels=out_chs,
                stride=2 if i > 0 else 1,
                depth=config.depths[i],
                drop_path_rates=drop_path_rates[i],
                name=f"stages.{i}",
            )
            self.stages.append(stage)
            prev_chs = out_chs

    def call(self, hidden_states, output_hidden_states=False, return_dict=True):
        all_hidden_states = () if output_hidden_states else None

        for i, layer_module in enumerate(self.stages):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            hidden_states = layer_module(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)

        return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)


@keras_serializable
class TFConvNextMainLayer(tf.keras.layers.Layer):
    config_class = ConvNextConfig

    def __init__(self, config: ConvNextConfig, add_pooling_layer: bool = True, **kwargs):
        super().__init__(**kwargs)

        self.config = config
        self.embeddings = TFConvNextEmbeddings(config, name="embeddings")
        self.encoder = TFConvNextEncoder(config, name="encoder")
        self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
        # We are setting the `data_format` like so because from here on we will revert to the
        # NCHW output format
        self.pooler = tf.keras.layers.GlobalAvgPool2D(data_format="channels_first") if add_pooling_layer else None

    @unpack_inputs
    def call(
        self,
        pixel_values: TFModelInputType | None = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        embedding_output = self.embeddings(pixel_values, training=training)

        encoder_outputs = self.encoder(
            embedding_output,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        last_hidden_state = encoder_outputs[0]
        # Change to NCHW output format have uniformity in the modules
        last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
        pooled_output = self.layernorm(self.pooler(last_hidden_state))

        # Change the other hidden state outputs to NCHW as well
        if output_hidden_states:
            hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])

        if not return_dict:
            hidden_states = hidden_states if output_hidden_states else ()
            return (last_hidden_state, pooled_output) + hidden_states

        return TFBaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
        )


class TFConvNextPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ConvNextConfig
    base_model_prefix = "convnext"
    main_input_name = "pixel_values"


CONVNEXT_START_DOCSTRING = r"""
    This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
    as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
    behavior.

    <Tip>

    TensorFlow models and layers in `transformers` accept two formats as input:

    - having all inputs as keyword arguments (like PyTorch models), or
    - having all inputs as a list, tuple or dict in the first positional argument.

    The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
    and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
    pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
    format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
    the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
    positional argument:

    - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
    - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
    `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
    - a dictionary with one or several input Tensors associated to the input names given in the docstring:
    `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`

    Note that when creating models and layers with
    [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
    about any of this, as you can just pass inputs like you would to any other Python function!

    </Tip>

    Parameters:
        config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""

CONVNEXT_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`ConvNextImageProcessor.__call__`] for details.

        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
            eager mode, in graph mode the value will always be set to True.
"""


@add_start_docstrings(
    "The bare ConvNext model outputting raw features without any specific head on top.",
    CONVNEXT_START_DOCSTRING,
)
class TFConvNextModel(TFConvNextPreTrainedModel):
    def __init__(self, config, *inputs, add_pooling_layer=True, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.convnext = TFConvNextMainLayer(config, add_pooling_layer=add_pooling_layer, name="convnext")

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
    def call(
        self,
        pixel_values: TFModelInputType | None = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, TFConvNextModel
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
        >>> model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224")

        >>> inputs = image_processor(images=image, return_tensors="tf")
        >>> outputs = model(**inputs)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        outputs = self.convnext(
            pixel_values=pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        if not return_dict:
            return (outputs[0],) + outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=outputs.last_hidden_state,
            pooler_output=outputs.pooler_output,
            hidden_states=outputs.hidden_states,
        )


@add_start_docstrings(
    """
    ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
    ImageNet.
    """,
    CONVNEXT_START_DOCSTRING,
)
class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClassificationLoss):
    def __init__(self, config: ConvNextConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.num_labels = config.num_labels
        self.convnext = TFConvNextMainLayer(config, name="convnext")

        # Classifier head
        self.classifier = tf.keras.layers.Dense(
            units=config.num_labels,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="classifier",
        )

    @unpack_inputs
    @add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def call(
        self,
        pixel_values: TFModelInputType | None = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        labels: np.ndarray | tf.Tensor | None = None,
        training: Optional[bool] = False,
    ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
        r"""
        labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, TFConvNextForImageClassification
        >>> import tensorflow as tf
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
        >>> model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224")

        >>> inputs = image_processor(images=image, return_tensors="tf")
        >>> outputs = model(**inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
        >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
        ```"""
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        outputs = self.convnext(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        pooled_output = outputs.pooler_output if return_dict else outputs[1]

        logits = self.classifier(pooled_output)
        loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TFSequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
        )