File size: 23,306 Bytes
9231ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
# coding=utf-8
# Copyright 2022 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ConvNext model."""
from __future__ import annotations
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_convnext import ConvNextConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ConvNextConfig"
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
class TFConvNextDropPath(tf.keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
class TFConvNextEmbeddings(tf.keras.layers.Layer):
"""This class is comparable to (and inspired by) the SwinEmbeddings class
found in src/transformers/models/swin/modeling_swin.py.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = tf.keras.layers.Conv2D(
filters=config.hidden_sizes[0],
kernel_size=config.patch_size,
strides=config.patch_size,
name="patch_embeddings",
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
)
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
self.num_channels = config.num_channels
def call(self, pixel_values):
if isinstance(pixel_values, dict):
pixel_values = pixel_values["pixel_values"]
num_channels = shape_list(pixel_values)[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.layernorm(embeddings)
return embeddings
class TFConvNextLayer(tf.keras.layers.Layer):
"""This corresponds to the `Block` class in the original implementation.
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
NHWC ordering, we can just apply the operations straight-away without the permutation.
Args:
config ([`ConvNextConfig`]): Model configuration class.
dim (`int`): Number of input channels.
drop_path (`float`): Stochastic depth rate. Default: 0.0.
"""
def __init__(self, config, dim, drop_path=0.0, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.config = config
self.dwconv = tf.keras.layers.Conv2D(
filters=dim,
kernel_size=7,
padding="same",
groups=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="dwconv",
) # depthwise conv
self.layernorm = tf.keras.layers.LayerNormalization(
epsilon=1e-6,
name="layernorm",
)
self.pwconv1 = tf.keras.layers.Dense(
units=4 * dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="pwconv1",
) # pointwise/1x1 convs, implemented with linear layers
self.act = get_tf_activation(config.hidden_act)
self.pwconv2 = tf.keras.layers.Dense(
units=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="pwconv2",
)
# Using `layers.Activation` instead of `tf.identity` to better control `training`
# behaviour.
self.drop_path = (
TFConvNextDropPath(drop_path, name="drop_path")
if drop_path > 0.0
else tf.keras.layers.Activation("linear", name="drop_path")
)
def build(self, input_shape: tf.TensorShape = None):
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
self.layer_scale_parameter = (
self.add_weight(
shape=(self.dim,),
initializer=tf.keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_parameter",
)
if self.config.layer_scale_init_value > 0
else None
)
super().build(input_shape)
def call(self, hidden_states, training=False):
input = hidden_states
x = self.dwconv(hidden_states)
x = self.layernorm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.layer_scale_parameter is not None:
x = self.layer_scale_parameter * x
x = input + self.drop_path(x, training=training)
return x
class TFConvNextStage(tf.keras.layers.Layer):
"""ConvNext stage, consisting of an optional downsampling layer + multiple residual blocks.
Args:
config ([`ConvNextConfig`]): Model configuration class.
in_channels (`int`): Number of input channels.
out_channels (`int`): Number of output channels.
depth (`int`): Number of residual blocks.
drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
"""
def __init__(
self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None, **kwargs
):
super().__init__(**kwargs)
if in_channels != out_channels or stride > 1:
self.downsampling_layer = [
tf.keras.layers.LayerNormalization(
epsilon=1e-6,
name="downsampling_layer.0",
),
# Inputs to this layer will follow NHWC format since we
# transposed the inputs from NCHW to NHWC in the `TFConvNextEmbeddings`
# layer. All the outputs throughout the model will be in NHWC
# from this point on until the output where we again change to
# NCHW.
tf.keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="downsampling_layer.1",
),
]
else:
self.downsampling_layer = [tf.identity]
drop_path_rates = drop_path_rates or [0.0] * depth
self.layers = [
TFConvNextLayer(
config,
dim=out_channels,
drop_path=drop_path_rates[j],
name=f"layers.{j}",
)
for j in range(depth)
]
def call(self, hidden_states):
for layer in self.downsampling_layer:
hidden_states = layer(hidden_states)
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
class TFConvNextEncoder(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.stages = []
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
drop_path_rates = tf.split(drop_path_rates, config.depths)
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
prev_chs = config.hidden_sizes[0]
for i in range(config.num_stages):
out_chs = config.hidden_sizes[i]
stage = TFConvNextStage(
config,
in_channels=prev_chs,
out_channels=out_chs,
stride=2 if i > 0 else 1,
depth=config.depths[i],
drop_path_rates=drop_path_rates[i],
name=f"stages.{i}",
)
self.stages.append(stage)
prev_chs = out_chs
def call(self, hidden_states, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
@keras_serializable
class TFConvNextMainLayer(tf.keras.layers.Layer):
config_class = ConvNextConfig
def __init__(self, config: ConvNextConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFConvNextEmbeddings(config, name="embeddings")
self.encoder = TFConvNextEncoder(config, name="encoder")
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
# We are setting the `data_format` like so because from here on we will revert to the
# NCHW output format
self.pooler = tf.keras.layers.GlobalAvgPool2D(data_format="channels_first") if add_pooling_layer else None
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = encoder_outputs[0]
# Change to NCHW output format have uniformity in the modules
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
pooled_output = self.layernorm(self.pooler(last_hidden_state))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
hidden_states = hidden_states if output_hidden_states else ()
return (last_hidden_state, pooled_output) + hidden_states
return TFBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
class TFConvNextPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConvNextConfig
base_model_prefix = "convnext"
main_input_name = "pixel_values"
CONVNEXT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
CONVNEXT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
"""
@add_start_docstrings(
"The bare ConvNext model outputting raw features without any specific head on top.",
CONVNEXT_START_DOCSTRING,
)
class TFConvNextModel(TFConvNextPreTrainedModel):
def __init__(self, config, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.convnext = TFConvNextMainLayer(config, add_pooling_layer=add_pooling_layer, name="convnext")
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFConvNextModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnext(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
CONVNEXT_START_DOCSTRING,
)
class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ConvNextConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.convnext = TFConvNextMainLayer(config, name="convnext")
# Classifier head
self.classifier = tf.keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="classifier",
)
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFConvNextForImageClassification
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnext(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
|