File size: 4,161 Bytes
9231ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
logger = logging.get_logger(__name__)
class HyperParamSearchBackendBase:
name: str
pip_package: str = None
@staticmethod
def is_available():
raise NotImplementedError
def run(self, trainer, n_trials: int, direction: str, **kwargs):
raise NotImplementedError
def default_hp_space(self, trial):
raise NotImplementedError
def ensure_available(self):
if not self.is_available():
raise RuntimeError(
f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}."
)
@classmethod
def pip_install(cls):
return f"`pip install {cls.pip_package or cls.name}`"
class OptunaBackend(HyperParamSearchBackendBase):
name = "optuna"
@staticmethod
def is_available():
return is_optuna_available()
def run(self, trainer, n_trials: int, direction: str, **kwargs):
return run_hp_search_optuna(trainer, n_trials, direction, **kwargs)
def default_hp_space(self, trial):
return default_hp_space_optuna(trial)
class RayTuneBackend(HyperParamSearchBackendBase):
name = "ray"
pip_package = "'ray[tune]'"
@staticmethod
def is_available():
return is_ray_available()
def run(self, trainer, n_trials: int, direction: str, **kwargs):
return run_hp_search_ray(trainer, n_trials, direction, **kwargs)
def default_hp_space(self, trial):
return default_hp_space_ray(trial)
class SigOptBackend(HyperParamSearchBackendBase):
name = "sigopt"
@staticmethod
def is_available():
return is_sigopt_available()
def run(self, trainer, n_trials: int, direction: str, **kwargs):
return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs)
def default_hp_space(self, trial):
return default_hp_space_sigopt(trial)
class WandbBackend(HyperParamSearchBackendBase):
name = "wandb"
@staticmethod
def is_available():
return is_wandb_available()
def run(self, trainer, n_trials: int, direction: str, **kwargs):
return run_hp_search_wandb(trainer, n_trials, direction, **kwargs)
def default_hp_space(self, trial):
return default_hp_space_wandb(trial)
ALL_HYPERPARAMETER_SEARCH_BACKENDS = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def default_hp_search_backend() -> str:
available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(available_backends) > 0:
name = available_backends[0].name
if len(available_backends) > 1:
logger.info(
f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default."
)
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f" - To install {backend.name} run {backend.pip_install()}"
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()
)
)
|