File size: 20,404 Bytes
9231ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch - Flax general utilities."""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
logger = logging.get_logger(__name__)
#####################
# PyTorch => Flax #
#####################
def load_pytorch_checkpoint_in_flax_state_dict(
flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False
):
"""Load pytorch checkpoints in a flax model"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
if not is_sharded:
pt_path = os.path.abspath(pytorch_checkpoint_path)
logger.info(f"Loading PyTorch weights from {pt_path}")
pt_state_dict = torch.load(pt_path, map_location="cpu")
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.")
flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model)
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model)
return flax_state_dict
def rename_key_and_reshape_tensor(
pt_tuple_key: Tuple[str],
pt_tensor: np.ndarray,
random_flax_state_dict: Dict[str, jnp.ndarray],
model_prefix: str,
) -> (Tuple[str], np.ndarray):
"""Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool:
"""Checks if `key` of `(prefix,) + key` is in random_flax_state_dict"""
return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0
# layer norm
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# embedding
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key):
return renamed_pt_tuple_key, pt_tensor
# conv layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key):
pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key):
pt_tensor = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
name = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
name = pt_tuple_key[-2] + "_g"
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
name = pt_tuple_key[-2] + "_v"
if name is not None:
renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
# convert pytorch tensor to numpy
# numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()}
pt_state_dict = {
k: v.numpy() if not v.dtype == torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items()
}
model_prefix = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
flax_model_params = flax_model.params["params"]
else:
flax_model_params = flax_model.params
random_flax_state_dict = flatten_dict(flax_model_params)
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
flax_batch_stats = flatten_dict(flax_model.params["batch_stats"])
random_flax_state_dict.update(flax_batch_stats)
flax_state_dict = {}
load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and (
model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()}
)
load_base_model_into_model_with_head = (model_prefix in flax_model_params) and (
model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
pt_tuple_key = tuple(pt_key.split("."))
is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16
# remove base model prefix if necessary
has_base_model_prefix = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
pt_tuple_key = pt_tuple_key[1:]
# Correctly rename weight parameters
flax_key, flax_tensor = rename_key_and_reshape_tensor(
pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix
)
# add model prefix if necessary
require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
flax_key = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(flax_key, None)
continue
# also add unexpected weight so that warning is thrown
flax_state_dict[("params",) + flax_key] = (
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
)
else:
# also add unexpected weight so that warning is thrown
flax_state_dict[flax_key] = (
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16)
)
return unflatten_dict(flax_state_dict)
############################
# Sharded Pytorch => Flax #
############################
def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model):
import torch
# Load the index
flax_state_dict = {}
for shard_file in shard_filenames:
# load using msgpack utils
pt_state_dict = torch.load(shard_file)
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
model_prefix = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
flax_model_params = flax_model.params["params"]
random_flax_state_dict = flatten_dict(flax_model_params)
random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"]))
else:
flax_model_params = flax_model.params
random_flax_state_dict = flatten_dict(flax_model_params)
load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and (
model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()}
)
load_base_model_into_model_with_head = (model_prefix in flax_model_params) and (
model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
pt_tuple_key = tuple(pt_key.split("."))
# remove base model prefix if necessary
has_base_model_prefix = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
pt_tuple_key = pt_tuple_key[1:]
# Correctly rename weight parameters
flax_key, flax_tensor = rename_key_and_reshape_tensor(
pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix
)
# add model prefix if necessary
require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
flax_key = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
continue
if "var" in flax_key[-1]:
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor)
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(flax_key, None)
continue
# also add unexpected weight so that warning is thrown
flax_state_dict[("params",) + flax_key] = jnp.asarray(flax_tensor)
else:
# also add unexpected weight so that warning is thrown
flax_state_dict[flax_key] = jnp.asarray(flax_tensor)
return unflatten_dict(flax_state_dict)
#####################
# Flax => PyTorch #
#####################
def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path):
"""Load flax checkpoints in a PyTorch model"""
flax_checkpoint_path = os.path.abspath(flax_checkpoint_path)
logger.info(f"Loading Flax weights from {flax_checkpoint_path}")
# import correct flax class
flax_cls = getattr(transformers, "Flax" + model.__class__.__name__)
# load flax weight dict
with open(flax_checkpoint_path, "rb") as state_f:
try:
flax_state_dict = from_bytes(flax_cls, state_f.read())
except UnpicklingError:
raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ")
return load_flax_weights_in_pytorch_model(model, flax_state_dict)
def load_flax_weights_in_pytorch_model(pt_model, flax_state):
"""Load flax checkpoints in a PyTorch model"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions."
)
raise
# check if we have bf16 weights
is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values()
if any(is_type_bf16):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model."
)
flax_state = jax.tree_util.tree_map(
lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state
)
flax_state_dict = flatten_dict(flax_state)
pt_model_dict = pt_model.state_dict()
load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()}
)
load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
unexpected_keys = []
missing_keys = set(pt_model_dict.keys())
for flax_key_tuple, flax_tensor in flax_state_dict.items():
has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix
require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
flax_key_tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict:
# conv layer
flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1))
elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict:
# linear layer
flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
flax_tensor = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
flax_key_tuple = flax_key_tuple[:-1] + ("weight",)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",)
elif "var" in flax_key_tuple[-1]:
flax_key_tuple = flax_key_tuple[:-1] + ("running_var",)
if "batch_stats" in flax_state:
flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header
else:
flax_key = ".".join(flax_key_tuple)
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
special_pt_names = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
key_components = key.split(".")
name = None
if key_components[-3::2] == ["parametrizations", "original0"]:
name = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
name = key_components[-2] + "_v"
if name is not None:
key_components = key_components[:-3] + [name]
key_to_check = ".".join(key_components)
special_pt_names[key_to_check] = key
if flax_key in special_pt_names:
flax_key = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
)
else:
# add weight to pytorch dict
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor)
# remove from missing keys
missing_keys.remove(flax_key)
else:
# weight is not expected by PyTorch model
unexpected_keys.append(flax_key)
pt_model.load_state_dict(pt_model_dict)
# re-transform missing_keys to list
missing_keys = list(missing_keys)
if len(unexpected_keys) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)."
)
else:
logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
" use it for predictions and inference."
)
else:
logger.warning(
f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"
"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {pt_model.__class__.__name__} for predictions without further training."
)
return pt_model
|