File size: 33,153 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from functools import partial
from multiprocessing import Pool, cpu_count

import numpy as np
from tqdm import tqdm

from ...models.bert.tokenization_bert import whitespace_tokenize
from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy
from ...utils import is_tf_available, is_torch_available, logging
from .utils import DataProcessor


# Store the tokenizers which insert 2 separators tokens
MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"}


if is_torch_available():
    import torch
    from torch.utils.data import TensorDataset

if is_tf_available():
    import tensorflow as tf

logger = logging.get_logger(__name__)


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
    """Returns tokenized answer spans that better match the annotated answer."""
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start : (new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)


def _check_is_max_context(doc_spans, cur_span_index, position):
    """Check if this is the 'max context' doc span for the token."""
    best_score = None
    best_span_index = None
    for span_index, doc_span in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index


def _new_check_is_max_context(doc_spans, cur_span_index, position):
    """Check if this is the 'max context' doc span for the token."""
    # if len(doc_spans) == 1:
    # return True
    best_score = None
    best_span_index = None
    for span_index, doc_span in enumerate(doc_spans):
        end = doc_span["start"] + doc_span["length"] - 1
        if position < doc_span["start"]:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span["start"]
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index


def _is_whitespace(c):
    if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
        return True
    return False


def squad_convert_example_to_features(
    example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training
):
    features = []
    if is_training and not example.is_impossible:
        # Get start and end position
        start_position = example.start_position
        end_position = example.end_position

        # If the answer cannot be found in the text, then skip this example.
        actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)])
        cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
        if actual_text.find(cleaned_answer_text) == -1:
            logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'")
            return []

    tok_to_orig_index = []
    orig_to_tok_index = []
    all_doc_tokens = []
    for i, token in enumerate(example.doc_tokens):
        orig_to_tok_index.append(len(all_doc_tokens))
        if tokenizer.__class__.__name__ in [
            "RobertaTokenizer",
            "LongformerTokenizer",
            "BartTokenizer",
            "RobertaTokenizerFast",
            "LongformerTokenizerFast",
            "BartTokenizerFast",
        ]:
            sub_tokens = tokenizer.tokenize(token, add_prefix_space=True)
        else:
            sub_tokens = tokenizer.tokenize(token)
        for sub_token in sub_tokens:
            tok_to_orig_index.append(i)
            all_doc_tokens.append(sub_token)

    if is_training and not example.is_impossible:
        tok_start_position = orig_to_tok_index[example.start_position]
        if example.end_position < len(example.doc_tokens) - 1:
            tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
        else:
            tok_end_position = len(all_doc_tokens) - 1

        (tok_start_position, tok_end_position) = _improve_answer_span(
            all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text
        )

    spans = []

    truncated_query = tokenizer.encode(
        example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length
    )

    # Tokenizers who insert 2 SEP tokens in-between <context> & <question> need to have special handling
    # in the way they compute mask of added tokens.
    tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower()
    sequence_added_tokens = (
        tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1
        if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET
        else tokenizer.model_max_length - tokenizer.max_len_single_sentence
    )
    sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair

    span_doc_tokens = all_doc_tokens
    while len(spans) * doc_stride < len(all_doc_tokens):
        # Define the side we want to truncate / pad and the text/pair sorting
        if tokenizer.padding_side == "right":
            texts = truncated_query
            pairs = span_doc_tokens
            truncation = TruncationStrategy.ONLY_SECOND.value
        else:
            texts = span_doc_tokens
            pairs = truncated_query
            truncation = TruncationStrategy.ONLY_FIRST.value

        encoded_dict = tokenizer.encode_plus(  # TODO(thom) update this logic
            texts,
            pairs,
            truncation=truncation,
            padding=padding_strategy,
            max_length=max_seq_length,
            return_overflowing_tokens=True,
            stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens,
            return_token_type_ids=True,
        )

        paragraph_len = min(
            len(all_doc_tokens) - len(spans) * doc_stride,
            max_seq_length - len(truncated_query) - sequence_pair_added_tokens,
        )

        if tokenizer.pad_token_id in encoded_dict["input_ids"]:
            if tokenizer.padding_side == "right":
                non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)]
            else:
                last_padding_id_position = (
                    len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id)
                )
                non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :]

        else:
            non_padded_ids = encoded_dict["input_ids"]

        tokens = tokenizer.convert_ids_to_tokens(non_padded_ids)

        token_to_orig_map = {}
        for i in range(paragraph_len):
            index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i
            token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i]

        encoded_dict["paragraph_len"] = paragraph_len
        encoded_dict["tokens"] = tokens
        encoded_dict["token_to_orig_map"] = token_to_orig_map
        encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens
        encoded_dict["token_is_max_context"] = {}
        encoded_dict["start"] = len(spans) * doc_stride
        encoded_dict["length"] = paragraph_len

        spans.append(encoded_dict)

        if "overflowing_tokens" not in encoded_dict or (
            "overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0
        ):
            break
        span_doc_tokens = encoded_dict["overflowing_tokens"]

    for doc_span_index in range(len(spans)):
        for j in range(spans[doc_span_index]["paragraph_len"]):
            is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j)
            index = (
                j
                if tokenizer.padding_side == "left"
                else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j
            )
            spans[doc_span_index]["token_is_max_context"][index] = is_max_context

    for span in spans:
        # Identify the position of the CLS token
        cls_index = span["input_ids"].index(tokenizer.cls_token_id)

        # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
        # Original TF implementation also keep the classification token (set to 0)
        p_mask = np.ones_like(span["token_type_ids"])
        if tokenizer.padding_side == "right":
            p_mask[len(truncated_query) + sequence_added_tokens :] = 0
        else:
            p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0

        pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id)
        special_token_indices = np.asarray(
            tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True)
        ).nonzero()

        p_mask[pad_token_indices] = 1
        p_mask[special_token_indices] = 1

        # Set the cls index to 0: the CLS index can be used for impossible answers
        p_mask[cls_index] = 0

        span_is_impossible = example.is_impossible
        start_position = 0
        end_position = 0
        if is_training and not span_is_impossible:
            # For training, if our document chunk does not contain an annotation
            # we throw it out, since there is nothing to predict.
            doc_start = span["start"]
            doc_end = span["start"] + span["length"] - 1
            out_of_span = False

            if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
                out_of_span = True

            if out_of_span:
                start_position = cls_index
                end_position = cls_index
                span_is_impossible = True
            else:
                if tokenizer.padding_side == "left":
                    doc_offset = 0
                else:
                    doc_offset = len(truncated_query) + sequence_added_tokens

                start_position = tok_start_position - doc_start + doc_offset
                end_position = tok_end_position - doc_start + doc_offset

        features.append(
            SquadFeatures(
                span["input_ids"],
                span["attention_mask"],
                span["token_type_ids"],
                cls_index,
                p_mask.tolist(),
                example_index=0,  # Can not set unique_id and example_index here. They will be set after multiple processing.
                unique_id=0,
                paragraph_len=span["paragraph_len"],
                token_is_max_context=span["token_is_max_context"],
                tokens=span["tokens"],
                token_to_orig_map=span["token_to_orig_map"],
                start_position=start_position,
                end_position=end_position,
                is_impossible=span_is_impossible,
                qas_id=example.qas_id,
            )
        )
    return features


def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase):
    global tokenizer
    tokenizer = tokenizer_for_convert


def squad_convert_examples_to_features(
    examples,
    tokenizer,
    max_seq_length,
    doc_stride,
    max_query_length,
    is_training,
    padding_strategy="max_length",
    return_dataset=False,
    threads=1,
    tqdm_enabled=True,
):
    """
    Converts a list of examples into a list of features that can be directly given as input to a model. It is
    model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.

    Args:
        examples: list of [`~data.processors.squad.SquadExample`]
        tokenizer: an instance of a child of [`PreTrainedTokenizer`]
        max_seq_length: The maximum sequence length of the inputs.
        doc_stride: The stride used when the context is too large and is split across several features.
        max_query_length: The maximum length of the query.
        is_training: whether to create features for model evaluation or model training.
        padding_strategy: Default to "max_length". Which padding strategy to use
        return_dataset: Default False. Either 'pt' or 'tf'.
            if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset
        threads: multiple processing threads.


    Returns:
        list of [`~data.processors.squad.SquadFeatures`]

    Example:

    ```python
    processor = SquadV2Processor()
    examples = processor.get_dev_examples(data_dir)

    features = squad_convert_examples_to_features(
        examples=examples,
        tokenizer=tokenizer,
        max_seq_length=args.max_seq_length,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length,
        is_training=not evaluate,
    )
    ```"""
    # Defining helper methods
    features = []

    threads = min(threads, cpu_count())
    with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:
        annotate_ = partial(
            squad_convert_example_to_features,
            max_seq_length=max_seq_length,
            doc_stride=doc_stride,
            max_query_length=max_query_length,
            padding_strategy=padding_strategy,
            is_training=is_training,
        )
        features = list(
            tqdm(
                p.imap(annotate_, examples, chunksize=32),
                total=len(examples),
                desc="convert squad examples to features",
                disable=not tqdm_enabled,
            )
        )

    new_features = []
    unique_id = 1000000000
    example_index = 0
    for example_features in tqdm(
        features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled
    ):
        if not example_features:
            continue
        for example_feature in example_features:
            example_feature.example_index = example_index
            example_feature.unique_id = unique_id
            new_features.append(example_feature)
            unique_id += 1
        example_index += 1
    features = new_features
    del new_features
    if return_dataset == "pt":
        if not is_torch_available():
            raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.")

        # Convert to Tensors and build dataset
        all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
        all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
        all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
        all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
        all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
        all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float)

        if not is_training:
            all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
            dataset = TensorDataset(
                all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask
            )
        else:
            all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
            all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
            dataset = TensorDataset(
                all_input_ids,
                all_attention_masks,
                all_token_type_ids,
                all_start_positions,
                all_end_positions,
                all_cls_index,
                all_p_mask,
                all_is_impossible,
            )

        return features, dataset
    elif return_dataset == "tf":
        if not is_tf_available():
            raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.")

        def gen():
            for i, ex in enumerate(features):
                if ex.token_type_ids is None:
                    yield (
                        {
                            "input_ids": ex.input_ids,
                            "attention_mask": ex.attention_mask,
                            "feature_index": i,
                            "qas_id": ex.qas_id,
                        },
                        {
                            "start_positions": ex.start_position,
                            "end_positions": ex.end_position,
                            "cls_index": ex.cls_index,
                            "p_mask": ex.p_mask,
                            "is_impossible": ex.is_impossible,
                        },
                    )
                else:
                    yield (
                        {
                            "input_ids": ex.input_ids,
                            "attention_mask": ex.attention_mask,
                            "token_type_ids": ex.token_type_ids,
                            "feature_index": i,
                            "qas_id": ex.qas_id,
                        },
                        {
                            "start_positions": ex.start_position,
                            "end_positions": ex.end_position,
                            "cls_index": ex.cls_index,
                            "p_mask": ex.p_mask,
                            "is_impossible": ex.is_impossible,
                        },
                    )

        # Why have we split the batch into a tuple? PyTorch just has a list of tensors.
        if "token_type_ids" in tokenizer.model_input_names:
            train_types = (
                {
                    "input_ids": tf.int32,
                    "attention_mask": tf.int32,
                    "token_type_ids": tf.int32,
                    "feature_index": tf.int64,
                    "qas_id": tf.string,
                },
                {
                    "start_positions": tf.int64,
                    "end_positions": tf.int64,
                    "cls_index": tf.int64,
                    "p_mask": tf.int32,
                    "is_impossible": tf.int32,
                },
            )

            train_shapes = (
                {
                    "input_ids": tf.TensorShape([None]),
                    "attention_mask": tf.TensorShape([None]),
                    "token_type_ids": tf.TensorShape([None]),
                    "feature_index": tf.TensorShape([]),
                    "qas_id": tf.TensorShape([]),
                },
                {
                    "start_positions": tf.TensorShape([]),
                    "end_positions": tf.TensorShape([]),
                    "cls_index": tf.TensorShape([]),
                    "p_mask": tf.TensorShape([None]),
                    "is_impossible": tf.TensorShape([]),
                },
            )
        else:
            train_types = (
                {"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string},
                {
                    "start_positions": tf.int64,
                    "end_positions": tf.int64,
                    "cls_index": tf.int64,
                    "p_mask": tf.int32,
                    "is_impossible": tf.int32,
                },
            )

            train_shapes = (
                {
                    "input_ids": tf.TensorShape([None]),
                    "attention_mask": tf.TensorShape([None]),
                    "feature_index": tf.TensorShape([]),
                    "qas_id": tf.TensorShape([]),
                },
                {
                    "start_positions": tf.TensorShape([]),
                    "end_positions": tf.TensorShape([]),
                    "cls_index": tf.TensorShape([]),
                    "p_mask": tf.TensorShape([None]),
                    "is_impossible": tf.TensorShape([]),
                },
            )

        return tf.data.Dataset.from_generator(gen, train_types, train_shapes)
    else:
        return features


class SquadProcessor(DataProcessor):
    """
    Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and
    version 2.0 of SQuAD, respectively.
    """

    train_file = None
    dev_file = None

    def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
        if not evaluate:
            answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8")
            answer_start = tensor_dict["answers"]["answer_start"][0].numpy()
            answers = []
        else:
            answers = [
                {"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")}
                for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"])
            ]

            answer = None
            answer_start = None

        return SquadExample(
            qas_id=tensor_dict["id"].numpy().decode("utf-8"),
            question_text=tensor_dict["question"].numpy().decode("utf-8"),
            context_text=tensor_dict["context"].numpy().decode("utf-8"),
            answer_text=answer,
            start_position_character=answer_start,
            title=tensor_dict["title"].numpy().decode("utf-8"),
            answers=answers,
        )

    def get_examples_from_dataset(self, dataset, evaluate=False):
        """
        Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset.

        Args:
            dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")*
            evaluate: Boolean specifying if in evaluation mode or in training mode

        Returns:
            List of SquadExample

        Examples:

        ```python
        >>> import tensorflow_datasets as tfds

        >>> dataset = tfds.load("squad")

        >>> training_examples = get_examples_from_dataset(dataset, evaluate=False)
        >>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True)
        ```"""

        if evaluate:
            dataset = dataset["validation"]
        else:
            dataset = dataset["train"]

        examples = []
        for tensor_dict in tqdm(dataset):
            examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))

        return examples

    def get_train_examples(self, data_dir, filename=None):
        """
        Returns the training examples from the data directory.

        Args:
            data_dir: Directory containing the data files used for training and evaluating.
            filename: None by default, specify this if the training file has a different name than the original one
                which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.

        """
        if data_dir is None:
            data_dir = ""

        if self.train_file is None:
            raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")

        with open(
            os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8"
        ) as reader:
            input_data = json.load(reader)["data"]
        return self._create_examples(input_data, "train")

    def get_dev_examples(self, data_dir, filename=None):
        """
        Returns the evaluation example from the data directory.

        Args:
            data_dir: Directory containing the data files used for training and evaluating.
            filename: None by default, specify this if the evaluation file has a different name than the original one
                which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively.
        """
        if data_dir is None:
            data_dir = ""

        if self.dev_file is None:
            raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")

        with open(
            os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8"
        ) as reader:
            input_data = json.load(reader)["data"]
        return self._create_examples(input_data, "dev")

    def _create_examples(self, input_data, set_type):
        is_training = set_type == "train"
        examples = []
        for entry in tqdm(input_data):
            title = entry["title"]
            for paragraph in entry["paragraphs"]:
                context_text = paragraph["context"]
                for qa in paragraph["qas"]:
                    qas_id = qa["id"]
                    question_text = qa["question"]
                    start_position_character = None
                    answer_text = None
                    answers = []

                    is_impossible = qa.get("is_impossible", False)
                    if not is_impossible:
                        if is_training:
                            answer = qa["answers"][0]
                            answer_text = answer["text"]
                            start_position_character = answer["answer_start"]
                        else:
                            answers = qa["answers"]

                    example = SquadExample(
                        qas_id=qas_id,
                        question_text=question_text,
                        context_text=context_text,
                        answer_text=answer_text,
                        start_position_character=start_position_character,
                        title=title,
                        is_impossible=is_impossible,
                        answers=answers,
                    )
                    examples.append(example)
        return examples


class SquadV1Processor(SquadProcessor):
    train_file = "train-v1.1.json"
    dev_file = "dev-v1.1.json"


class SquadV2Processor(SquadProcessor):
    train_file = "train-v2.0.json"
    dev_file = "dev-v2.0.json"


class SquadExample:
    """
    A single training/test example for the Squad dataset, as loaded from disk.

    Args:
        qas_id: The example's unique identifier
        question_text: The question string
        context_text: The context string
        answer_text: The answer string
        start_position_character: The character position of the start of the answer
        title: The title of the example
        answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
        is_impossible: False by default, set to True if the example has no possible answer.
    """

    def __init__(
        self,
        qas_id,
        question_text,
        context_text,
        answer_text,
        start_position_character,
        title,
        answers=[],
        is_impossible=False,
    ):
        self.qas_id = qas_id
        self.question_text = question_text
        self.context_text = context_text
        self.answer_text = answer_text
        self.title = title
        self.is_impossible = is_impossible
        self.answers = answers

        self.start_position, self.end_position = 0, 0

        doc_tokens = []
        char_to_word_offset = []
        prev_is_whitespace = True

        # Split on whitespace so that different tokens may be attributed to their original position.
        for c in self.context_text:
            if _is_whitespace(c):
                prev_is_whitespace = True
            else:
                if prev_is_whitespace:
                    doc_tokens.append(c)
                else:
                    doc_tokens[-1] += c
                prev_is_whitespace = False
            char_to_word_offset.append(len(doc_tokens) - 1)

        self.doc_tokens = doc_tokens
        self.char_to_word_offset = char_to_word_offset

        # Start and end positions only has a value during evaluation.
        if start_position_character is not None and not is_impossible:
            self.start_position = char_to_word_offset[start_position_character]
            self.end_position = char_to_word_offset[
                min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
            ]


class SquadFeatures:
    """
    Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
    [`~data.processors.squad.SquadExample`] using the
    :method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method.

    Args:
        input_ids: Indices of input sequence tokens in the vocabulary.
        attention_mask: Mask to avoid performing attention on padding token indices.
        token_type_ids: Segment token indices to indicate first and second portions of the inputs.
        cls_index: the index of the CLS token.
        p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
            Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
        example_index: the index of the example
        unique_id: The unique Feature identifier
        paragraph_len: The length of the context
        token_is_max_context:
            List of booleans identifying which tokens have their maximum context in this feature object. If a token
            does not have their maximum context in this feature object, it means that another feature object has more
            information related to that token and should be prioritized over this feature for that token.
        tokens: list of tokens corresponding to the input ids
        token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
        start_position: start of the answer token index
        end_position: end of the answer token index
        encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
    """

    def __init__(
        self,
        input_ids,
        attention_mask,
        token_type_ids,
        cls_index,
        p_mask,
        example_index,
        unique_id,
        paragraph_len,
        token_is_max_context,
        tokens,
        token_to_orig_map,
        start_position,
        end_position,
        is_impossible,
        qas_id: str = None,
        encoding: BatchEncoding = None,
    ):
        self.input_ids = input_ids
        self.attention_mask = attention_mask
        self.token_type_ids = token_type_ids
        self.cls_index = cls_index
        self.p_mask = p_mask

        self.example_index = example_index
        self.unique_id = unique_id
        self.paragraph_len = paragraph_len
        self.token_is_max_context = token_is_max_context
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map

        self.start_position = start_position
        self.end_position = end_position
        self.is_impossible = is_impossible
        self.qas_id = qas_id

        self.encoding = encoding


class SquadResult:
    """
    Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.

    Args:
        unique_id: The unique identifier corresponding to that example.
        start_logits: The logits corresponding to the start of the answer
        end_logits: The logits corresponding to the end of the answer
    """

    def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None):
        self.start_logits = start_logits
        self.end_logits = end_logits
        self.unique_id = unique_id

        if start_top_index:
            self.start_top_index = start_top_index
            self.end_top_index = end_top_index
            self.cls_logits = cls_logits