--- license: apache-2.0 tags: - generated_from_trainer #datasets: #- dataset/riksdagen metrics: - wer model-index: - name: whisper-tiny-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dataset/riksdagen audiofolder type: dataset/riksdagen config: null split: None args: audiofolder metrics: - name: Wer type: wer value: 0.3700987201570632 --- # whisper-tiny-sv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the dataset/riksdagen audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6435 - Wer: 0.3701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0032 | 0.08 | 250 | 1.0075 | 0.5063 | | 0.8983 | 0.17 | 500 | 0.8945 | 0.4649 | | 0.8227 | 0.25 | 750 | 0.8336 | 0.4491 | | 0.777 | 0.33 | 1000 | 0.7931 | 0.4314 | | 0.7728 | 0.42 | 1250 | 0.7640 | 0.4217 | | 0.7141 | 0.5 | 1500 | 0.7407 | 0.4134 | | 0.7208 | 0.58 | 1750 | 0.7225 | 0.4023 | | 0.6911 | 0.66 | 2000 | 0.7083 | 0.3942 | | 0.6924 | 0.75 | 2250 | 0.6948 | 0.3911 | | 0.6702 | 0.83 | 2500 | 0.6849 | 0.3884 | | 0.663 | 0.91 | 2750 | 0.6766 | 0.3769 | | 0.6548 | 1.0 | 3000 | 0.6686 | 0.3759 | | 0.638 | 1.08 | 3250 | 0.6627 | 0.3728 | | 0.6222 | 1.16 | 3500 | 0.6574 | 0.3733 | | 0.6323 | 1.25 | 3750 | 0.6528 | 0.3691 | | 0.6192 | 1.33 | 4000 | 0.6498 | 0.3688 | | 0.633 | 1.41 | 4250 | 0.6469 | 0.3677 | | 0.6229 | 1.5 | 4500 | 0.6451 | 0.3681 | | 0.6246 | 1.58 | 4750 | 0.6439 | 0.3706 | | 0.6214 | 1.66 | 5000 | 0.6435 | 0.3701 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.0a0+8a1a93a - Datasets 2.7.1 - Tokenizers 0.13.2