import torch from torch import nn from torchvision.models.resnet import ResNet, Bottleneck class ResNet50Encoder(ResNet): def __init__(self, pretrained: bool = False): super().__init__( block=Bottleneck, layers=[3, 4, 6, 3], replace_stride_with_dilation=[False, False, True], norm_layer=None) if pretrained: self.load_state_dict(torch.hub.load_state_dict_from_url( 'https://download.pytorch.org/models/resnet50-0676ba61.pth')) del self.avgpool del self.fc def forward_single_frame(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) f1 = x # 1/2 x = self.maxpool(x) x = self.layer1(x) f2 = x # 1/4 x = self.layer2(x) f3 = x # 1/8 x = self.layer3(x) x = self.layer4(x) f4 = x # 1/16 return [f1, f2, f3, f4] def forward_time_series(self, x): B, T = x.shape[:2] features = self.forward_single_frame(x.flatten(0, 1)) features = [f.unflatten(0, (B, T)) for f in features] return features def forward(self, x): if x.ndim == 5: return self.forward_time_series(x) else: return self.forward_single_frame(x)