''' MIT License Copyright (c) 2019 Shunsuke Saito, Zeng Huang, and Ryota Natsume Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import cv2 import numpy as np from .glm import ortho class Camera: def __init__(self, width=1600, height=1200): # Focal Length # equivalent 50mm focal = np.sqrt(width * width + height * height) self.focal_x = focal self.focal_y = focal # Principal Point Offset self.principal_x = width / 2 self.principal_y = height / 2 # Axis Skew self.skew = 0 # Image Size self.width = width self.height = height self.near = 1 self.far = 10 # Camera Center self.eye = np.array([0, 0, -3.6]) self.center = np.array([0, 0, 0]) self.direction = np.array([0, 0, -1]) self.right = np.array([1, 0, 0]) self.up = np.array([0, 1, 0]) self.ortho_ratio = None def sanity_check(self): self.center = self.center.reshape([-1]) self.direction = self.direction.reshape([-1]) self.right = self.right.reshape([-1]) self.up = self.up.reshape([-1]) assert len(self.center) == 3 assert len(self.direction) == 3 assert len(self.right) == 3 assert len(self.up) == 3 @staticmethod def normalize_vector(v): v_norm = np.linalg.norm(v) return v if v_norm == 0 else v / v_norm def get_real_z_value(self, z): z_near = self.near z_far = self.far z_n = 2.0 * z - 1.0 z_e = 2.0 * z_near * z_far / (z_far + z_near - z_n * (z_far - z_near)) return z_e def get_rotation_matrix(self): rot_mat = np.eye(3) d = self.eye - self.center d = -self.normalize_vector(d) u = self.up self.right = -np.cross(u, d) u = np.cross(d, self.right) rot_mat[0, :] = self.right rot_mat[1, :] = u rot_mat[2, :] = d # s = self.right # s = self.normalize_vector(s) # rot_mat[0, :] = s # u = self.up # u = self.normalize_vector(u) # rot_mat[1, :] = -u # rot_mat[2, :] = self.normalize_vector(self.direction) return rot_mat def get_translation_vector(self): rot_mat = self.get_rotation_matrix() trans = -np.dot(rot_mat.T, self.eye) return trans def get_intrinsic_matrix(self): int_mat = np.eye(3) int_mat[0, 0] = self.focal_x int_mat[1, 1] = self.focal_y int_mat[0, 1] = self.skew int_mat[0, 2] = self.principal_x int_mat[1, 2] = self.principal_y return int_mat def get_projection_matrix(self): ext_mat = self.get_extrinsic_matrix() int_mat = self.get_intrinsic_matrix() return np.matmul(int_mat, ext_mat) def get_extrinsic_matrix(self): rot_mat = self.get_rotation_matrix() int_mat = self.get_intrinsic_matrix() trans = self.get_translation_vector() extrinsic = np.eye(4) extrinsic[:3, :3] = rot_mat extrinsic[:3, 3] = trans return extrinsic[:3, :] def set_rotation_matrix(self, rot_mat): self.direction = rot_mat[2, :] self.up = -rot_mat[1, :] self.right = rot_mat[0, :] def set_intrinsic_matrix(self, int_mat): self.focal_x = int_mat[0, 0] self.focal_y = int_mat[1, 1] self.skew = int_mat[0, 1] self.principal_x = int_mat[0, 2] self.principal_y = int_mat[1, 2] def set_projection_matrix(self, proj_mat): res = cv2.decomposeProjectionMatrix(proj_mat) int_mat, rot_mat, camera_center_homo = res[0], res[1], res[2] camera_center = camera_center_homo[0:3] / camera_center_homo[3] camera_center = camera_center.reshape(-1) int_mat = int_mat / int_mat[2][2] self.set_intrinsic_matrix(int_mat) self.set_rotation_matrix(rot_mat) self.center = camera_center self.sanity_check() def get_gl_matrix(self): z_near = self.near z_far = self.far rot_mat = self.get_rotation_matrix() int_mat = self.get_intrinsic_matrix() trans = self.get_translation_vector() extrinsic = np.eye(4) extrinsic[:3, :3] = rot_mat extrinsic[:3, 3] = trans axis_adj = np.eye(4) axis_adj[2, 2] = -1 axis_adj[1, 1] = -1 model_view = np.matmul(axis_adj, extrinsic) projective = np.zeros([4, 4]) projective[:2, :2] = int_mat[:2, :2] projective[:2, 2:3] = -int_mat[:2, 2:3] projective[3, 2] = -1 projective[2, 2] = (z_near + z_far) projective[2, 3] = (z_near * z_far) if self.ortho_ratio is None: ndc = ortho(0, self.width, 0, self.height, z_near, z_far) perspective = np.matmul(ndc, projective) else: perspective = ortho(-self.width * self.ortho_ratio / 2, self.width * self.ortho_ratio / 2, -self.height * self.ortho_ratio / 2, self.height * self.ortho_ratio / 2, z_near, z_far) return perspective, model_view def KRT_from_P(proj_mat, normalize_K=True): res = cv2.decomposeProjectionMatrix(proj_mat) K, Rot, camera_center_homog = res[0], res[1], res[2] camera_center = camera_center_homog[0:3] / camera_center_homog[3] trans = -Rot.dot(camera_center) if normalize_K: K = K / K[2][2] return K, Rot, trans def MVP_from_P(proj_mat, width, height, near=0.1, far=10000): ''' Convert OpenCV camera calibration matrix to OpenGL projection and model view matrix :param proj_mat: OpenCV camera projeciton matrix :param width: Image width :param height: Image height :param near: Z near value :param far: Z far value :return: OpenGL projection matrix and model view matrix ''' res = cv2.decomposeProjectionMatrix(proj_mat) K, Rot, camera_center_homog = res[0], res[1], res[2] camera_center = camera_center_homog[0:3] / camera_center_homog[3] trans = -Rot.dot(camera_center) K = K / K[2][2] extrinsic = np.eye(4) extrinsic[:3, :3] = Rot extrinsic[:3, 3:4] = trans axis_adj = np.eye(4) axis_adj[2, 2] = -1 axis_adj[1, 1] = -1 model_view = np.matmul(axis_adj, extrinsic) zFar = far zNear = near projective = np.zeros([4, 4]) projective[:2, :2] = K[:2, :2] projective[:2, 2:3] = -K[:2, 2:3] projective[3, 2] = -1 projective[2, 2] = (zNear + zFar) projective[2, 3] = (zNear * zFar) ndc = ortho(0, width, 0, height, zNear, zFar) perspective = np.matmul(ndc, projective) return perspective, model_view