''' MIT License Copyright (c) 2019 Shunsuke Saito, Zeng Huang, and Ryota Natsume Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import torch from torch.nn import init import torch.nn as nn import torch.nn.functional as F import functools def load_state_dict(state_dict, net): model_dict = net.state_dict() pretrained_dict = {k: v for k, v in state_dict.items() if k in model_dict} for k, v in pretrained_dict.items(): if v.size() == model_dict[k].size(): model_dict[k] = v not_initialized = set() for k, v in model_dict.items(): if k not in pretrained_dict or v.size() != pretrained_dict[k].size(): not_initialized.add(k.split('.')[0]) print('not initialized', sorted(not_initialized)) net.load_state_dict(model_dict) return net def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias) def init_weights(net, init_type='normal', init_gain=0.02): def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find( 'BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): if len(gpu_ids) > 0: assert (torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net class CustomBCELoss(nn.Module): def __init__(self, brock=False, gamma=None): super(CustomBCELoss, self).__init__() self.brock = brock self.gamma = gamma def forward(self, pred, gt, gamma, w=None): x_hat = torch.clamp(pred, 1e-5, 1.0-1e-5) # prevent log(0) from happening gamma = gamma[:,None,None] if self.gamma is None else self.gamma if self.brock: x = 3.0*gt - 1.0 # rescaled to [-1,2] loss = -(gamma*x*torch.log(x_hat) + (1.0-gamma)*(1.0-x)*torch.log(1.0-x_hat)) else: loss = -(gamma*gt*torch.log(x_hat) + (1.0-gamma)*(1.0-gt)*torch.log(1.0-x_hat)) if w is not None: if len(w.size()) == 1: w = w[:,None,None] return (loss * w).mean() else: return loss.mean() class CustomMSELoss(nn.Module): def __init__(self, gamma=None): super(CustomMSELoss, self).__init__() self.gamma = gamma def forward(self, pred, gt, gamma, w=None): gamma = gamma[:,None,None] if self.gamma is None else self.gamma weight = gamma * gt + (1.0-gamma) * (1 - gt) loss = (weight * (pred - gt).pow(2)).mean() if w is not None: return (loss * w).mean() else: return loss.mean() def createMLP(dims, norm='bn', activation='relu', last_op=nn.Tanh(), dropout=False): act = None if activation == 'relu': act = nn.ReLU() if activation == 'lrelu': act = nn.LeakyReLU() if activation == 'selu': act = nn.SELU() if activation == 'elu': act = nn.ELU() if activation == 'prelu': act = nn.PReLU() mlp = [] for i in range(1,len(dims)): if norm == 'bn': mlp += [ nn.Linear(dims[i-1], dims[i]), nn.BatchNorm1d(dims[i])] if norm == 'in': mlp += [ nn.Linear(dims[i-1], dims[i]), nn.InstanceNorm1d(dims[i])] if norm == 'wn': mlp += [ nn.utils.weight_norm(nn.Linear(dims[i-1], dims[i]), name='weight')] if norm == 'none': mlp += [ nn.Linear(dims[i-1], dims[i])] if i != len(dims)-1: if act is not None: mlp += [act] if dropout: mlp += [nn.Dropout(0.2)] if last_op is not None: mlp += [last_op] return mlp