''' MIT License Copyright (c) 2019 Shunsuke Saito, Zeng Huang, and Ryota Natsume Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import numpy as np def vec3(x, y, z): return np.array([x, y, z], dtype=np.float32) def radians(v): return np.radians(v) def identity(): return np.identity(4, dtype=np.float32) def empty(): return np.zeros([4, 4], dtype=np.float32) def magnitude(v): return np.linalg.norm(v) def normalize(v): m = magnitude(v) return v if m == 0 else v / m def dot(u, v): return np.sum(u * v) def cross(u, v): res = vec3(0, 0, 0) res[0] = u[1] * v[2] - u[2] * v[1] res[1] = u[2] * v[0] - u[0] * v[2] res[2] = u[0] * v[1] - u[1] * v[0] return res # below functions can be optimized def translate(m, v): res = np.copy(m) res[:, 3] = m[:, 0] * v[0] + m[:, 1] * v[1] + m[:, 2] * v[2] + m[:, 3] return res def rotate(m, angle, v): a = angle c = np.cos(a) s = np.sin(a) axis = normalize(v) temp = (1 - c) * axis rot = empty() rot[0][0] = c + temp[0] * axis[0] rot[0][1] = temp[0] * axis[1] + s * axis[2] rot[0][2] = temp[0] * axis[2] - s * axis[1] rot[1][0] = temp[1] * axis[0] - s * axis[2] rot[1][1] = c + temp[1] * axis[1] rot[1][2] = temp[1] * axis[2] + s * axis[0] rot[2][0] = temp[2] * axis[0] + s * axis[1] rot[2][1] = temp[2] * axis[1] - s * axis[0] rot[2][2] = c + temp[2] * axis[2] res = empty() res[:, 0] = m[:, 0] * rot[0][0] + m[:, 1] * rot[0][1] + m[:, 2] * rot[0][2] res[:, 1] = m[:, 0] * rot[1][0] + m[:, 1] * rot[1][1] + m[:, 2] * rot[1][2] res[:, 2] = m[:, 0] * rot[2][0] + m[:, 1] * rot[2][1] + m[:, 2] * rot[2][2] res[:, 3] = m[:, 3] return res def perspective(fovy, aspect, zNear, zFar): tanHalfFovy = np.tan(fovy / 2) res = empty() res[0][0] = 1 / (aspect * tanHalfFovy) res[1][1] = 1 / (tanHalfFovy) res[2][3] = -1 res[2][2] = - (zFar + zNear) / (zFar - zNear) res[3][2] = -(2 * zFar * zNear) / (zFar - zNear) return res.T def ortho(left, right, bottom, top, zNear, zFar): # res = np.ones([4, 4], dtype=np.float32) res = identity() res[0][0] = 2 / (right - left) res[1][1] = 2 / (top - bottom) res[2][2] = - 2 / (zFar - zNear) res[3][0] = - (right + left) / (right - left) res[3][1] = - (top + bottom) / (top - bottom) res[3][2] = - (zFar + zNear) / (zFar - zNear) return res.T def lookat(eye, center, up): f = normalize(center - eye) s = normalize(cross(f, up)) u = cross(s, f) res = identity() res[0][0] = s[0] res[1][0] = s[1] res[2][0] = s[2] res[0][1] = u[0] res[1][1] = u[1] res[2][1] = u[2] res[0][2] = -f[0] res[1][2] = -f[1] res[2][2] = -f[2] res[3][0] = -dot(s, eye) res[3][1] = -dot(u, eye) res[3][2] = -dot(f, eye) return res.T def transform(d, m): return np.dot(m, d.T).T