''' MIT License Copyright (c) 2019 Shunsuke Saito, Zeng Huang, and Ryota Natsume Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import io import os import torch from skimage.io import imread import numpy as np import cv2 from tqdm import tqdm_notebook as tqdm import base64 from IPython.display import HTML # Util function for loading meshes from pytorch3d.io import load_objs_as_meshes from IPython.display import HTML from base64 import b64encode # Data structures and functions for rendering from pytorch3d.structures import Meshes from pytorch3d.renderer import ( look_at_view_transform, OpenGLOrthographicCameras, PointLights, DirectionalLights, Materials, RasterizationSettings, MeshRenderer, MeshRasterizer, HardPhongShader, TexturesVertex ) def set_renderer(): # Setup device = torch.device("cuda:0") torch.cuda.set_device(device) # Initialize an OpenGL perspective camera. R, T = look_at_view_transform(2.0, 0, 180) cameras = OpenGLOrthographicCameras(device=device, R=R, T=T) raster_settings = RasterizationSettings( image_size=512, blur_radius=0.0, faces_per_pixel=1, bin_size = None, max_faces_per_bin = None ) lights = PointLights(device=device, location=((2.0, 2.0, 2.0),)) renderer = MeshRenderer( rasterizer=MeshRasterizer( cameras=cameras, raster_settings=raster_settings ), shader=HardPhongShader( device=device, cameras=cameras, lights=lights ) ) return renderer def get_verts_rgb_colors(obj_path): rgb_colors = [] f = open(obj_path) lines = f.readlines() for line in lines: ls = line.split(' ') if len(ls) == 7: rgb_colors.append(ls[-3:]) return np.array(rgb_colors, dtype='float32')[None, :, :] def generate_video_from_obj(obj_path, image_path, video_path, renderer): input_image = cv2.imread(image_path) input_image = input_image[:,:input_image.shape[1]//3] input_image = cv2.resize(input_image, (512,512)) # Setup device = torch.device("cuda:0") torch.cuda.set_device(device) # Load obj file verts_rgb_colors = get_verts_rgb_colors(obj_path) verts_rgb_colors = torch.from_numpy(verts_rgb_colors).to(device) textures = TexturesVertex(verts_features=verts_rgb_colors) # wo_textures = TexturesVertex(verts_features=torch.ones_like(verts_rgb_colors)*0.75) # Load obj mesh = load_objs_as_meshes([obj_path], device=device) # Set mesh vers = mesh._verts_list faces = mesh._faces_list mesh_w_tex = Meshes(vers, faces, textures) # mesh_wo_tex = Meshes(vers, faces, wo_textures) # create VideoWriter fourcc = cv2. VideoWriter_fourcc(*'MP4V') out = cv2.VideoWriter(video_path, fourcc, 20.0, (1024,512)) for i in tqdm(range(90)): R, T = look_at_view_transform(1.8, 0, i*4, device=device) images_w_tex = renderer(mesh_w_tex, R=R, T=T) images_w_tex = np.clip(images_w_tex[0, ..., :3].cpu().numpy(), 0.0, 1.0)[:, :, ::-1] * 255 # images_wo_tex = renderer(mesh_wo_tex, R=R, T=T) # images_wo_tex = np.clip(images_wo_tex[0, ..., :3].cpu().numpy(), 0.0, 1.0)[:, :, ::-1] * 255 image = np.concatenate([input_image, images_w_tex], axis=1) out.write(image.astype('uint8')) out.release() def video(path): mp4 = open(path,'rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() return HTML('' % data_url)