#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Peike Li @Contact : peike.li@yahoo.com @File : simple_extractor.py @Time : 8/30/19 8:59 PM @Desc : Simple Extractor @License : This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import os, os.path as osp, pdb import torch import argparse import numpy as np from PIL import Image from tqdm import tqdm from torch.utils.data import DataLoader import torchvision.transforms as transforms import networks from utils.transforms import transform_logits from datasets.simple_extractor_dataset import SimpleFolderDataset dataset_settings = { 'lip': { 'input_size': [473, 473], 'num_classes': 20, 'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] }, 'atr': { 'input_size': [512, 512], 'num_classes': 18, 'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] }, 'pascal': { 'input_size': [512, 512], 'num_classes': 7, 'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], } } def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") parser.add_argument("--dataset", type=str, default='lip', choices=['lip', 'atr', 'pascal']) parser.add_argument("--model-restore", type=str, default='', help="restore pretrained model parameters.") parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.") parser.add_argument("--input-dir", type=str, default='', help="path of input image folder.") parser.add_argument("--output-dir", type=str, default='', help="path of output image folder.") parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.") return parser.parse_args() def get_palette(num_cls): """ Returns the color map for visualizing the segmentation mask. Args: num_cls: Number of classes Returns: The color map """ n = num_cls palette = [0] * (n * 3) for j in range(0, n): lab = j palette[j * 3 + 0] = 0 palette[j * 3 + 1] = 0 palette[j * 3 + 2] = 0 i = 0 while lab: palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) i += 1 lab >>= 3 return palette def main(): args = get_arguments() gpus = [int(i) for i in args.gpu.split(',')] assert len(gpus) == 1 if not args.gpu == 'None': os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu num_classes = dataset_settings[args.dataset]['num_classes'] input_size = dataset_settings[args.dataset]['input_size'] label = dataset_settings[args.dataset]['label'] print("Evaluating total class number {} with {}".format(num_classes, label)) model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None) state_dict = torch.load(args.model_restore)['state_dict'] from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict) model.cuda() model.eval() transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) ]) dataset = SimpleFolderDataset(root=args.input_dir, input_size=input_size, transform=transform) dataloader = DataLoader(dataset) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) palette = get_palette(num_classes) with torch.no_grad(): for idx, batch in enumerate(tqdm(dataloader)): image, meta = batch img_name = meta['name'][0] c = meta['center'].numpy()[0] s = meta['scale'].numpy()[0] w = meta['width'].numpy()[0] h = meta['height'].numpy()[0] output = model(image.cuda()) upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True) upsample_output = upsample(output[0][-1][0].unsqueeze(0)) upsample_output = upsample_output.squeeze() upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size) parsing_result = np.argmax(logits_result, axis=2) #pdb.set_trace() parsing_result_path = os.path.join(args.output_dir, img_name[:-4] + '.png') output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) output_img.putpalette(palette) output_img.save(parsing_result_path) if args.logits: path1 = os.path.join(args.output_dir, f'mask_parsing_{img_name[:-4]}.npy') path2 = osp.join(args.output_dir, f'{img_name[:-4]}.npy') #pdb.set_trace() np.save(path1, parsing_result) np.save(path2, parsing_result) return if __name__ == '__main__': main()