|
from torch import nn |
|
|
|
class LRASPP(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super().__init__() |
|
self.aspp1 = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(True) |
|
) |
|
self.aspp2 = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, out_channels, 1, bias=False), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward_single_frame(self, x): |
|
return self.aspp1(x) * self.aspp2(x) |
|
|
|
def forward_time_series(self, x): |
|
B, T = x.shape[:2] |
|
x = self.forward_single_frame(x.flatten(0, 1)).unflatten(0, (B, T)) |
|
return x |
|
|
|
def forward(self, x): |
|
if x.ndim == 5: |
|
return self.forward_time_series(x) |
|
else: |
|
return self.forward_single_frame(x) |