|
""" |
|
HR (High-Resolution) evaluation. We found using numpy is very slow for high resolution, so we moved it to PyTorch using CUDA. |
|
|
|
Note, the script only does evaluation. You will need to first inference yourself and save the results to disk |
|
Expected directory format for both prediction and ground-truth is: |
|
|
|
videomatte_1920x1080 |
|
βββ videomatte_motion |
|
βββ pha |
|
βββ 0000 |
|
βββ 0000.png |
|
βββ fgr |
|
βββ 0000 |
|
βββ 0000.png |
|
βββ videomatte_static |
|
βββ pha |
|
βββ 0000 |
|
βββ 0000.png |
|
βββ fgr |
|
βββ 0000 |
|
βββ 0000.png |
|
|
|
Prediction must have the exact file structure and file name as the ground-truth, |
|
meaning that if the ground-truth is png/jpg, prediction should be png/jpg. |
|
|
|
Example usage: |
|
|
|
python evaluate.py \ |
|
--pred-dir pred/videomatte_1920x1080 \ |
|
--true-dir true/videomatte_1920x1080 |
|
|
|
An excel sheet with evaluation results will be written to "pred/videomatte_1920x1080/videomatte_1920x1080.xlsx" |
|
""" |
|
|
|
|
|
import argparse |
|
import os |
|
import cv2 |
|
import kornia |
|
import numpy as np |
|
import xlsxwriter |
|
import torch |
|
from concurrent.futures import ThreadPoolExecutor |
|
from tqdm import tqdm |
|
|
|
|
|
class Evaluator: |
|
def __init__(self): |
|
self.parse_args() |
|
self.init_metrics() |
|
self.evaluate() |
|
self.write_excel() |
|
|
|
def parse_args(self): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--pred-dir', type=str, required=True) |
|
parser.add_argument('--true-dir', type=str, required=True) |
|
parser.add_argument('--num-workers', type=int, default=48) |
|
parser.add_argument('--metrics', type=str, nargs='+', default=[ |
|
'pha_mad', 'pha_mse', 'pha_grad', 'pha_dtssd', 'fgr_mse']) |
|
self.args = parser.parse_args() |
|
|
|
def init_metrics(self): |
|
self.mad = MetricMAD() |
|
self.mse = MetricMSE() |
|
self.grad = MetricGRAD() |
|
self.dtssd = MetricDTSSD() |
|
|
|
def evaluate(self): |
|
tasks = [] |
|
position = 0 |
|
|
|
with ThreadPoolExecutor(max_workers=self.args.num_workers) as executor: |
|
for dataset in sorted(os.listdir(self.args.pred_dir)): |
|
if os.path.isdir(os.path.join(self.args.pred_dir, dataset)): |
|
for clip in sorted(os.listdir(os.path.join(self.args.pred_dir, dataset))): |
|
future = executor.submit(self.evaluate_worker, dataset, clip, position) |
|
tasks.append((dataset, clip, future)) |
|
position += 1 |
|
|
|
self.results = [(dataset, clip, future.result()) for dataset, clip, future in tasks] |
|
|
|
def write_excel(self): |
|
workbook = xlsxwriter.Workbook(os.path.join(self.args.pred_dir, f'{os.path.basename(self.args.pred_dir)}.xlsx')) |
|
summarysheet = workbook.add_worksheet('summary') |
|
metricsheets = [workbook.add_worksheet(metric) for metric in self.results[0][2].keys()] |
|
|
|
for i, metric in enumerate(self.results[0][2].keys()): |
|
summarysheet.write(i, 0, metric) |
|
summarysheet.write(i, 1, f'={metric}!B2') |
|
|
|
for row, (dataset, clip, metrics) in enumerate(self.results): |
|
for metricsheet, metric in zip(metricsheets, metrics.values()): |
|
|
|
if row == 0: |
|
metricsheet.write(1, 0, 'Average') |
|
metricsheet.write(1, 1, f'=AVERAGE(C2:ZZ2)') |
|
for col in range(len(metric)): |
|
metricsheet.write(0, col + 2, col) |
|
colname = xlsxwriter.utility.xl_col_to_name(col + 2) |
|
metricsheet.write(1, col + 2, f'=AVERAGE({colname}3:{colname}9999)') |
|
|
|
metricsheet.write(row + 2, 0, dataset) |
|
metricsheet.write(row + 2, 1, clip) |
|
metricsheet.write_row(row + 2, 2, metric) |
|
|
|
workbook.close() |
|
|
|
def evaluate_worker(self, dataset, clip, position): |
|
framenames = sorted(os.listdir(os.path.join(self.args.pred_dir, dataset, clip, 'pha'))) |
|
metrics = {metric_name : [] for metric_name in self.args.metrics} |
|
|
|
pred_pha_tm1 = None |
|
true_pha_tm1 = None |
|
|
|
for i, framename in enumerate(tqdm(framenames, desc=f'{dataset} {clip}', position=position, dynamic_ncols=True)): |
|
true_pha = cv2.imread(os.path.join(self.args.true_dir, dataset, clip, 'pha', framename), cv2.IMREAD_GRAYSCALE) |
|
pred_pha = cv2.imread(os.path.join(self.args.pred_dir, dataset, clip, 'pha', framename), cv2.IMREAD_GRAYSCALE) |
|
|
|
true_pha = torch.from_numpy(true_pha).cuda(non_blocking=True).float().div_(255) |
|
pred_pha = torch.from_numpy(pred_pha).cuda(non_blocking=True).float().div_(255) |
|
|
|
if 'pha_mad' in self.args.metrics: |
|
metrics['pha_mad'].append(self.mad(pred_pha, true_pha)) |
|
if 'pha_mse' in self.args.metrics: |
|
metrics['pha_mse'].append(self.mse(pred_pha, true_pha)) |
|
if 'pha_grad' in self.args.metrics: |
|
metrics['pha_grad'].append(self.grad(pred_pha, true_pha)) |
|
if 'pha_conn' in self.args.metrics: |
|
metrics['pha_conn'].append(self.conn(pred_pha, true_pha)) |
|
if 'pha_dtssd' in self.args.metrics: |
|
if i == 0: |
|
metrics['pha_dtssd'].append(0) |
|
else: |
|
metrics['pha_dtssd'].append(self.dtssd(pred_pha, pred_pha_tm1, true_pha, true_pha_tm1)) |
|
|
|
pred_pha_tm1 = pred_pha |
|
true_pha_tm1 = true_pha |
|
|
|
if 'fgr_mse' in self.args.metrics: |
|
true_fgr = cv2.imread(os.path.join(self.args.true_dir, dataset, clip, 'fgr', framename), cv2.IMREAD_COLOR) |
|
pred_fgr = cv2.imread(os.path.join(self.args.pred_dir, dataset, clip, 'fgr', framename), cv2.IMREAD_COLOR) |
|
|
|
true_fgr = torch.from_numpy(true_fgr).float().div_(255) |
|
pred_fgr = torch.from_numpy(pred_fgr).float().div_(255) |
|
|
|
true_msk = true_pha > 0 |
|
metrics['fgr_mse'].append(self.mse(pred_fgr[true_msk], true_fgr[true_msk])) |
|
|
|
return metrics |
|
|
|
|
|
class MetricMAD: |
|
def __call__(self, pred, true): |
|
return (pred - true).abs_().mean() * 1e3 |
|
|
|
|
|
class MetricMSE: |
|
def __call__(self, pred, true): |
|
return ((pred - true) ** 2).mean() * 1e3 |
|
|
|
|
|
class MetricGRAD: |
|
def __init__(self, sigma=1.4): |
|
self.filter_x, self.filter_y = self.gauss_filter(sigma) |
|
self.filter_x = torch.from_numpy(self.filter_x).unsqueeze(0).cuda() |
|
self.filter_y = torch.from_numpy(self.filter_y).unsqueeze(0).cuda() |
|
|
|
def __call__(self, pred, true): |
|
true_grad = self.gauss_gradient(true) |
|
pred_grad = self.gauss_gradient(pred) |
|
return ((true_grad - pred_grad) ** 2).sum() / 1000 |
|
|
|
def gauss_gradient(self, img): |
|
img_filtered_x = kornia.filters.filter2D(img[None, None, :, :], self.filter_x, border_type='replicate')[0, 0] |
|
img_filtered_y = kornia.filters.filter2D(img[None, None, :, :], self.filter_y, border_type='replicate')[0, 0] |
|
return (img_filtered_x**2 + img_filtered_y**2).sqrt() |
|
|
|
@staticmethod |
|
def gauss_filter(sigma, epsilon=1e-2): |
|
half_size = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))) |
|
size = np.int(2 * half_size + 1) |
|
|
|
|
|
filter_x = np.zeros((size, size)) |
|
for i in range(size): |
|
for j in range(size): |
|
filter_x[i, j] = MetricGRAD.gaussian(i - half_size, sigma) * MetricGRAD.dgaussian( |
|
j - half_size, sigma) |
|
|
|
|
|
norm = np.sqrt((filter_x**2).sum()) |
|
filter_x = filter_x / norm |
|
filter_y = np.transpose(filter_x) |
|
|
|
return filter_x, filter_y |
|
|
|
@staticmethod |
|
def gaussian(x, sigma): |
|
return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi)) |
|
|
|
@staticmethod |
|
def dgaussian(x, sigma): |
|
return -x * MetricGRAD.gaussian(x, sigma) / sigma**2 |
|
|
|
|
|
class MetricDTSSD: |
|
def __call__(self, pred_t, pred_tm1, true_t, true_tm1): |
|
dtSSD = ((pred_t - pred_tm1) - (true_t - true_tm1)) ** 2 |
|
dtSSD = dtSSD.sum() / true_t.numel() |
|
dtSSD = dtSSD.sqrt() |
|
return dtSSD * 1e2 |
|
|
|
|
|
if __name__ == '__main__': |
|
Evaluator() |