mambazjp's picture
Upload 82 files
8870024
raw
history blame
9.52 kB
"""
Copyright 2016 Max Planck Society, Federica Bogo, Angjoo Kanazawa. All rights reserved.
This software is provided for research purposes only.
By using this software you agree to the terms of the SMPLify license here:
http://smplify.is.tue.mpg.de/license
This script implements an approximation of the body by means of capsules (20 in total).
Capsules can be further simplified into spheres (with centers along the capsule axis and
radius corresponding to the capsule radius) to efficiently compute an interpenetration error term
(as in sphere_collisions.py).
"""
import numpy as np
import chumpy as ch
import scipy.sparse as sp
from capsule_ch import Capsule
joint2name = ['pelvis', 'leftThigh', 'rightThigh', 'spine', 'leftCalf',
'rightCalf', 'spine1', 'leftFoot', 'rightFoot', 'spine2', 'neck',
'leftShoulder', 'rightShoulder', 'head', 'leftUpperArm',
'rightUpperArm', 'leftForeArm', 'rightForeArm', 'leftHand',
'rightHand']
# the orientation of each capsule
rots0 = ch.asarray(
[[0, 0, np.pi / 2], [0, 0, np.pi], [0, 0, np.pi], [0, 0, np.pi / 2],
[0, 0, np.pi], [0, 0, np.pi], [0, 0, np.pi / 2], [np.pi / 2, 0, 0],
[np.pi / 2, 0, 0], [0, 0, np.pi / 2], [0, 0, 0], [0, 0, -np.pi / 2],
[0, 0, np.pi / 2], [0, 0, 0], [0, 0, -np.pi / 2], [0, 0, np.pi / 2],
[0, 0, -np.pi / 2], [0, 0, np.pi / 2], [0, 0, -np.pi / 2],
[0, 0, np.pi / 2]])
# groups hands and fingers, feet and toes
# each comment line provides the body part corresonding to the capsule
# and the corresponding id
mujoco2segm = [[0], # hip 0
[1], # leftThigh 1
[2], # rightThigh 2
[3], # spine 3
[4], # leftCalf 4
[5], # rightCalf 5
[6], # spine1 6
[7, 10], # leftFoot + leftToes 7
[8, 11], # rightFoot + rightToes 8
[9], # spine2 9
[12], # neck 10
[13], # leftShoulder 11
[14], # rightShoulder 12
[15], # head 13
[16], # leftUpperArm 14
[17], # rightUpperArm 15
[18], # leftForeArm 16
[19], # rightForeArm 17
[20, 22], # leftHand + leftFingers 18
[21, 23]] # rightHand + rightFingers 19
# sets pairs of ids, corresponding to capsules that should not
# penetrate each other
collisions = [
[0, 16], # hip and leftForeArm
[0, 17], # hip and rightForeArm
[0, 18], # hip and leftHand
[0, 19], # hip and rightHand
[3, 16], # spine and leftForeArm
[3, 17], # spine and rightForeArm
[3, 18], # spine and leftHand
[3, 19], # spine and rightHand
[4, 5], # leftCalf and rightCalf
[6, 16], # spine1 and leftForeArm
[6, 17], # spine1 and rightForeArm
[6, 18], # spine1 and leftHand
[6, 19], # spine1 and rightHand
[7, 5], # leftFoot and rightCalf
[8, 7], # rightFoot and leftFoot
[8, 4], # rightFoot and leftCalf
[9, 16], # spine2 and leftForeArm
[9, 17], # spine2 and rightForeArm
[9, 18], # spine2 and leftHand
[9, 19], # spine2 and rightHand
[11, 16], # leftShoulder and leftForeArm
[12, 17], # rightShoulder and rightForeArm
[18, 19], # leftHand and rightHand
]
def get_capsules(model, wrt_betas=None, length_regs=None, rad_regs=None):
from opendr.geometry import Rodrigues
if length_regs is not None:
n_shape_dofs = length_regs.shape[0] - 1
else:
n_shape_dofs = model.betas.r.size
segm = np.argmax(model.weights_prior, axis=1)
J_off = ch.zeros((len(joint2name), 3))
rots = rots0.copy()
mujoco_t_mid = [0, 3, 6, 9]
if wrt_betas is not None:
# if we want to differentiate wrt betas (shape), we must have the
# regressors...
assert (length_regs is not None and rad_regs is not None)
# ... and betas must be a chumpy object
assert (hasattr(wrt_betas, 'dterms'))
pad = ch.concatenate(
(wrt_betas, ch.zeros(n_shape_dofs - len(wrt_betas)), ch.ones(1)))
lengths = pad.dot(length_regs)
rads = pad.dot(rad_regs)
else:
lengths = ch.ones(len(joint2name))
rads = ch.ones(len(joint2name))
betas = wrt_betas if wrt_betas is not None else model.betas
n_betas = len(betas)
# the joint regressors are the original, pre-optimized ones
# (middle of the part frontier)
myJ_regressor = model.J_regressor_prior
myJ0 = ch.vstack(
(ch.ch.MatVecMult(myJ_regressor, model.v_template[:, 0] +
model.shapedirs[:, :, :n_betas].dot(betas)[:, 0]),
ch.ch.MatVecMult(myJ_regressor, model.v_template[:, 1] +
model.shapedirs[:, :, :n_betas].dot(betas)[:, 1]),
ch.ch.MatVecMult(myJ_regressor, model.v_template[:, 2] +
model.shapedirs[:, :, :n_betas].dot(betas)[:, 2]))).T
# with small adjustments for hips, spine and feet
myJ = ch.vstack(
[ch.concatenate([myJ0[0, 0], (
.6 * myJ0[0, 1] + .2 * myJ0[1, 1] + .2 * myJ0[2, 1]), myJ0[9, 2]]),
ch.vstack([myJ0[i] for i in range(1, 7)]), ch.concatenate(
[myJ0[7, 0], (1.1 * myJ0[7, 1] - .1 * myJ0[4, 1]), myJ0[7, 2]]),
ch.concatenate(
[myJ0[8, 0], (1.1 * myJ0[8, 1] - .1 * myJ0[5, 1]), myJ0[8, 2]]),
ch.concatenate(
[myJ0[9, 0], myJ0[9, 1], (.2 * myJ0[9, 2] + .8 * myJ0[12, 2])]),
ch.vstack([myJ0[i] for i in range(10, 24)])])
capsules = []
# create one capsule per mujoco joint
for ijoint, segms in enumerate(mujoco2segm):
if wrt_betas is None:
vidxs = np.asarray([segm == k for k in segms]).any(axis=0)
verts = model.v_template[vidxs].r
dims = (verts.max(axis=0) - verts.min(axis=0))
rads[ijoint] = .5 * ((dims[(np.argmax(dims) + 1) % 3] + dims[(
np.argmax(dims) + 2) % 3]) / 4.)
lengths[ijoint] = max(dims) - 2. * rads[ijoint].r
# the core joints are different, since the capsule is not in the joint
# but in the middle
if ijoint in mujoco_t_mid:
len_offset = ch.vstack([ch.zeros(1), ch.abs(lengths[ijoint]) / 2.,
ch.zeros(1)]).reshape(3, 1)
caps = Capsule(
(J_off[ijoint] + myJ[mujoco2segm[ijoint][0]]).reshape(
3, 1) - Rodrigues(rots[ijoint]).dot(len_offset),
rots[ijoint], rads[ijoint], lengths[ijoint])
else:
caps = Capsule(
(J_off[ijoint] + myJ[mujoco2segm[ijoint][0]]).reshape(3, 1),
rots[ijoint], rads[ijoint], lengths[ijoint])
caps.id = ijoint
capsules.append(caps)
return capsules
def set_sphere_centers(capsule, floor=True):
if floor:
n_spheres = int(np.floor(capsule.length.r / (2 * capsule.rad.r) - 1))
else:
n_spheres = int(np.ceil(capsule.length.r / (2 * capsule.rad.r) - 1))
# remove "redundant" spheres for right and left thigh...
if capsule.id == 1 or capsule.id == 2:
centers = [capsule.axis[1].r]
# ... and right and left upper arm
elif capsule.id == 14 or capsule.id == 15:
if n_spheres >= 1:
centers = []
else:
centers = [capsule.axis[1].r]
else:
centers = [capsule.axis[0].r, capsule.axis[1].r]
if n_spheres >= 1:
step = capsule.length.r / (n_spheres + 1)
for i in xrange(n_spheres):
centers.append(capsule.axis[0].r + (capsule.axis[
1].r - capsule.axis[0].r) * step * (i + 1) / capsule.length.r)
capsule.centers = centers
return capsule.centers
def capsule_dist(capsule0, capsule1, alpha=.3, increase_hand=True):
range0 = range(capsule0.center_id,
capsule0.center_id + len(capsule0.centers))
range1 = range(capsule1.center_id,
capsule1.center_id + len(capsule1.centers))
cnt0 = ch.concatenate([[cid] * len(range1) for cid in range0])
cnt1 = ch.concatenate([range1] * len(range0))
if increase_hand:
if (capsule0.id == 18) or (capsule0.id == 19) or (
capsule1.id == 18) or (capsule1.id == 19):
dst = (alpha * 1.2 * capsule0.rad.r)**2 + (alpha * 1.2 *
capsule1.rad.r)**2
else:
dst = (alpha * capsule0.rad.r)**2 + (alpha * capsule1.rad.r)**2
else:
dst = (alpha * capsule0.rad.r)**2 + (alpha * capsule1.rad.r)**2
radiuss = np.hstack([dst] * len(cnt0)).squeeze()
return (cnt0, cnt1, radiuss)
def get_capsule_bweights(vs):
# "blend" weights for the capsule. They are binary
rows = np.arange(vs.shape[0])
cols = np.tile(np.hstack((range(10), range(12, 22))), (52, 1)).T.ravel()
data = np.ones(vs.shape[0])
caps_weights = np.asarray(
sp.csc_matrix(
(data, (rows, cols)), shape=(vs.shape[0], 24)).todense())
return caps_weights
def get_sphere_bweights(sph_vs, capsules):
rows = np.arange(sph_vs.shape[0])
cols = []
for cps, w in zip(capsules, range(10) + range(12, 22)):
cols.append([w] * len(cps.centers))
cols = np.hstack(cols)
data = np.ones(sph_vs.shape[0])
sph_weights = np.asarray(
sp.csc_matrix(
(data, (rows, cols)), shape=(sph_vs.shape[0], 24)).todense())
return sph_weights