|
|
|
|
|
|
|
import chumpy as ch |
|
import numpy as np |
|
import cPickle as pkl |
|
import scipy.sparse as sp |
|
from chumpy.ch import Ch |
|
from vendor.smpl.posemapper import posemap, Rodrigues |
|
from vendor.smpl.serialization import backwards_compatibility_replacements |
|
|
|
|
|
VERT_NOSE = 331 |
|
VERT_EAR_L = 3485 |
|
VERT_EAR_R = 6880 |
|
VERT_EYE_L = 2802 |
|
VERT_EYE_R = 6262 |
|
|
|
|
|
class Smpl(Ch): |
|
""" |
|
Class to store SMPL object with slightly improved code and access to more matrices |
|
""" |
|
terms = 'model', |
|
dterms = 'trans', 'betas', 'pose', 'v_personal' |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.on_changed(self._dirty_vars) |
|
|
|
def on_changed(self, which): |
|
if not hasattr(self, 'trans'): |
|
self.trans = ch.zeros(3) |
|
|
|
if not hasattr(self, 'betas'): |
|
self.betas = ch.zeros(10) |
|
|
|
if not hasattr(self, 'pose'): |
|
self.pose = ch.zeros(72) |
|
|
|
if 'model' in which: |
|
if not isinstance(self.model, dict): |
|
dd = pkl.load(open(self.model)) |
|
else: |
|
dd = self.model |
|
|
|
backwards_compatibility_replacements(dd) |
|
|
|
for s in ['posedirs', 'shapedirs']: |
|
if (s in dd) and not hasattr(dd[s], 'dterms'): |
|
dd[s] = ch.array(dd[s]) |
|
|
|
self.f = dd['f'] |
|
self.v_template = dd['v_template'] |
|
if not hasattr(self, 'v_personal'): |
|
self.v_personal = ch.zeros_like(self.v_template) |
|
self.shapedirs = dd['shapedirs'] |
|
self.J_regressor = dd['J_regressor'] |
|
if 'J_regressor_prior' in dd: |
|
self.J_regressor_prior = dd['J_regressor_prior'] |
|
if sp.issparse(self.J_regressor): |
|
self.J_regressor = self.J_regressor.toarray() |
|
self.bs_type = dd['bs_type'] |
|
self.weights = dd['weights'] |
|
if 'vert_sym_idxs' in dd: |
|
self.vert_sym_idxs = dd['vert_sym_idxs'] |
|
if 'weights_prior' in dd: |
|
self.weights_prior = dd['weights_prior'] |
|
self.kintree_table = dd['kintree_table'] |
|
self.posedirs = dd['posedirs'] |
|
|
|
self._set_up() |
|
|
|
def _set_up(self): |
|
self.v_shaped = self.shapedirs.dot(self.betas) + self.v_template |
|
self.v_shaped_personal = self.v_shaped + self.v_personal |
|
self.J = ch.sum(self.J_regressor.T.reshape(-1, 1, 24) * self.v_shaped.reshape(-1, 3, 1), axis=0).T |
|
self.v_posevariation = self.posedirs.dot(posemap(self.bs_type)(self.pose)) |
|
self.v_poseshaped = self.v_shaped_personal + self.v_posevariation |
|
|
|
self.A, A_global = self._global_rigid_transformation() |
|
self.Jtr = ch.vstack([g[:3, 3] for g in A_global]) |
|
self.J_transformed = self.Jtr + self.trans.reshape((1, 3)) |
|
|
|
self.V = self.A.dot(self.weights.T) |
|
|
|
rest_shape_h = ch.hstack((self.v_poseshaped, ch.ones((self.v_poseshaped.shape[0], 1)))) |
|
self.v_posed = ch.sum(self.V.T * rest_shape_h.reshape(-1, 4, 1), axis=1)[:, :3] |
|
self.v = self.v_posed + self.trans |
|
|
|
def _global_rigid_transformation(self): |
|
results = {} |
|
pose = self.pose.reshape((-1, 3)) |
|
parent = {i: self.kintree_table[0, i] for i in range(1, self.kintree_table.shape[1])} |
|
|
|
with_zeros = lambda x: ch.vstack((x, ch.array([[0.0, 0.0, 0.0, 1.0]]))) |
|
pack = lambda x: ch.hstack([ch.zeros((4, 3)), x.reshape((4, 1))]) |
|
|
|
results[0] = with_zeros(ch.hstack((Rodrigues(pose[0, :]), self.J[0, :].reshape((3, 1))))) |
|
|
|
for i in range(1, self.kintree_table.shape[1]): |
|
results[i] = results[parent[i]].dot(with_zeros(ch.hstack(( |
|
Rodrigues(pose[i, :]), |
|
(self.J[i, :] - self.J[parent[i], :]).reshape((3, 1)) |
|
)))) |
|
|
|
results = [results[i] for i in sorted(results.keys())] |
|
results_global = results |
|
|
|
|
|
results2 = [results[i] - (pack( |
|
results[i].dot(ch.concatenate((self.J[i, :], [0])))) |
|
) for i in range(len(results))] |
|
result = ch.dstack(results2) |
|
|
|
return result, results_global |
|
|
|
def compute_r(self): |
|
return self.v.r |
|
|
|
def compute_dr_wrt(self, wrt): |
|
if wrt is not self.trans and wrt is not self.betas and wrt is not self.pose and wrt is not self.v_personal: |
|
return None |
|
|
|
return self.v.dr_wrt(wrt) |
|
|
|
|
|
def copy_smpl(smpl, model): |
|
new = Smpl(model, betas=smpl.betas) |
|
new.pose[:] = smpl.pose.r |
|
new.trans[:] = smpl.trans.r |
|
|
|
return new |
|
|
|
|
|
def joints_coco(smpl): |
|
J = smpl.J_transformed |
|
nose = smpl[VERT_NOSE] |
|
ear_l = smpl[VERT_EAR_L] |
|
ear_r = smpl[VERT_EAR_R] |
|
eye_l = smpl[VERT_EYE_L] |
|
eye_r = smpl[VERT_EYE_R] |
|
|
|
shoulders_m = ch.sum(J[[14, 13]], axis=0) / 2. |
|
neck = J[12] - 0.55 * (J[12] - shoulders_m) |
|
|
|
return ch.vstack(( |
|
nose, |
|
neck, |
|
2.1 * (J[14] - shoulders_m) + neck, |
|
J[[19, 21]], |
|
2.1 * (J[13] - shoulders_m) + neck, |
|
J[[18, 20]], |
|
J[2] + 0.38 * (J[2] - J[1]), |
|
J[[5, 8]], |
|
J[1] + 0.38 * (J[1] - J[2]), |
|
J[[4, 7]], |
|
eye_r, |
|
eye_l, |
|
ear_r, |
|
ear_l, |
|
)) |
|
|
|
|
|
def model_params_in_camera_coords(trans, pose, J0, camera_t, camera_rt): |
|
root = Rodrigues(np.matmul(Rodrigues(camera_rt).r, Rodrigues(pose[:3]).r)).r.reshape(-1) |
|
pose[:3] = root |
|
|
|
trans = (Rodrigues(camera_rt).dot(J0 + trans) - J0 + camera_t).r |
|
|
|
return trans, pose |
|
|
|
|
|
if __name__ == '__main__': |
|
smpl = Smpl(model='../vendor/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl') |
|
smpl.pose[:] = np.random.randn(72) * .2 |
|
smpl.pose[0] = np.pi |
|
|
|
|
|
|
|
from opendr.renderer import ColoredRenderer |
|
from opendr.camera import ProjectPoints |
|
from opendr.lighting import LambertianPointLight |
|
|
|
rn = ColoredRenderer() |
|
|
|
|
|
w, h = (640, 480) |
|
|
|
rn.camera = ProjectPoints(v=smpl, rt=np.zeros(3), t=np.array([0, 0, 3.]), f=np.array([w, w]), |
|
c=np.array([w, h]) / 2., k=np.zeros(5)) |
|
rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h} |
|
rn.set(v=smpl, f=smpl.f, bgcolor=np.zeros(3)) |
|
|
|
|
|
rn.vc = LambertianPointLight( |
|
f=smpl.f, |
|
v=rn.v, |
|
num_verts=len(smpl), |
|
light_pos=np.array([-1000, -1000, -2000]), |
|
vc=np.ones_like(smpl) * .9, |
|
light_color=np.array([1., 1., 1.])) |
|
|
|
|
|
import cv2 |
|
|
|
cv2.imshow('render_SMPL', rn.r) |
|
print ('..Print any key while on the display window') |
|
cv2.waitKey(0) |
|
cv2.destroyAllWindows() |
|
|