|
|
|
|
|
import argparse |
|
import os |
|
|
|
class BaseOptions(): |
|
def __init__(self): |
|
self.initialized = False |
|
self.parser = None |
|
|
|
def initialize(self, parser): |
|
|
|
g_data = parser.add_argument_group('Data') |
|
g_data.add_argument('--dataset', type=str, default='renderppl', help='dataset name') |
|
g_data.add_argument('--dataroot', type=str, default='./data', |
|
help='path to images (data folder)') |
|
|
|
g_data.add_argument('--loadSize', type=int, default=512, help='load size of input image') |
|
|
|
|
|
g_exp = parser.add_argument_group('Experiment') |
|
g_exp.add_argument('--name', type=str, default='', |
|
help='name of the experiment. It decides where to store samples and models') |
|
g_exp.add_argument('--debug', action='store_true', help='debug mode or not') |
|
g_exp.add_argument('--mode', type=str, default='inout', help='inout || color') |
|
|
|
|
|
g_train = parser.add_argument_group('Training') |
|
g_train.add_argument('--tmp_id', type=int, default=0, help='tmp_id') |
|
g_train.add_argument('--gpu_id', type=int, default=0, help='gpu id for cuda') |
|
g_train.add_argument('--batch_size', type=int, default=32, help='input batch size') |
|
g_train.add_argument('--num_threads', default=1, type=int, help='# sthreads for loading data') |
|
g_train.add_argument('--serial_batches', action='store_true', |
|
help='if true, takes images in order to make batches, otherwise takes them randomly') |
|
g_train.add_argument('--pin_memory', action='store_true', help='pin_memory') |
|
g_train.add_argument('--learning_rate', type=float, default=1e-3, help='adam learning rate') |
|
g_train.add_argument('--num_iter', type=int, default=30000, help='num iterations to train') |
|
g_train.add_argument('--freq_plot', type=int, default=100, help='freqency of the error plot') |
|
g_train.add_argument('--freq_mesh', type=int, default=20000, help='freqency of the save_checkpoints') |
|
g_train.add_argument('--freq_eval', type=int, default=5000, help='freqency of the save_checkpoints') |
|
g_train.add_argument('--freq_save_ply', type=int, default=5000, help='freqency of the save ply') |
|
g_train.add_argument('--freq_save_image', type=int, default=100, help='freqency of the save input image') |
|
g_train.add_argument('--resume_epoch', type=int, default=-1, help='epoch resuming the training') |
|
g_train.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') |
|
g_train.add_argument('--finetune', action='store_true', help='fine tuning netG in training C') |
|
|
|
|
|
g_test = parser.add_argument_group('Testing') |
|
g_test.add_argument('--resolution', type=int, default=512, help='# of grid in mesh reconstruction') |
|
g_test.add_argument('--no_numel_eval', action='store_true', help='no numerical evaluation') |
|
g_test.add_argument('--no_mesh_recon', action='store_true', help='no mesh reconstruction') |
|
|
|
|
|
g_sample = parser.add_argument_group('Sampling') |
|
g_sample.add_argument('--num_sample_inout', type=int, default=6000, help='# of sampling points') |
|
g_sample.add_argument('--num_sample_surface', type=int, default=0, help='# of sampling points') |
|
g_sample.add_argument('--num_sample_normal', type=int, default=0, help='# of sampling points') |
|
g_sample.add_argument('--num_sample_color', type=int, default=0, help='# of sampling points') |
|
g_sample.add_argument('--num_pts_dic', type=int, default=1, help='# of pts dic you load') |
|
|
|
g_sample.add_argument('--crop_type', type=str, default='fullbody', help='Sampling file name.') |
|
g_sample.add_argument('--uniform_ratio', type=float, default=0.1, help='maximum sigma for sampling') |
|
g_sample.add_argument('--mask_ratio', type=float, default=0.5, help='maximum sigma for sampling') |
|
g_sample.add_argument('--sampling_parts', action='store_true', help='Sampling on the fly') |
|
g_sample.add_argument('--sampling_otf', action='store_true', help='Sampling on the fly') |
|
g_sample.add_argument('--sampling_mode', type=str, default='sigma_uniform', help='Sampling file name.') |
|
g_sample.add_argument('--linear_anneal_sigma', action='store_true', help='linear annealing of sigma') |
|
g_sample.add_argument('--sigma_max', type=float, default=0.0, help='maximum sigma for sampling') |
|
g_sample.add_argument('--sigma_min', type=float, default=0.0, help='minimum sigma for sampling') |
|
g_sample.add_argument('--sigma', type=float, default=1.0, help='sigma for sampling') |
|
g_sample.add_argument('--sigma_surface', type=float, default=1.0, help='sigma for sampling') |
|
|
|
g_sample.add_argument('--z_size', type=float, default=200.0, help='z normalization factor') |
|
|
|
|
|
g_model = parser.add_argument_group('Model') |
|
|
|
g_model.add_argument('--norm', type=str, default='batch', |
|
help='instance normalization or batch normalization or group normalization') |
|
|
|
|
|
g_model.add_argument('--netG', type=str, default='hgpifu', help='piximp | fanimp | hghpifu') |
|
g_model.add_argument('--netC', type=str, default='resblkpifu', help='resblkpifu | resblkhpifu') |
|
|
|
|
|
g_model.add_argument('--num_stack', type=int, default=4, help='# of hourglass') |
|
g_model.add_argument('--hg_depth', type=int, default=2, help='# of stacked layer of hourglass') |
|
g_model.add_argument('--hg_down', type=str, default='ave_pool', help='ave pool || conv64 || conv128') |
|
g_model.add_argument('--hg_dim', type=int, default=256, help='256 | 512') |
|
|
|
|
|
g_model.add_argument('--mlp_norm', type=str, default='group', help='normalization for volume branch') |
|
g_model.add_argument('--mlp_dim', nargs='+', default=[257, 1024, 512, 256, 128, 1], type=int, |
|
help='# of dimensions of mlp. no need to put the first channel') |
|
g_model.add_argument('--mlp_dim_color', nargs='+', default=[1024, 512, 256, 128, 3], type=int, |
|
help='# of dimensions of mlp. no need to put the first channel') |
|
g_model.add_argument('--mlp_res_layers', nargs='+', default=[2,3,4], type=int, |
|
help='leyers that has skip connection. use 0 for no residual pass') |
|
g_model.add_argument('--merge_layer', type=int, default=-1) |
|
|
|
|
|
parser.add_argument('--random_body_chop', action='store_true', help='if random flip') |
|
parser.add_argument('--random_flip', action='store_true', help='if random flip') |
|
parser.add_argument('--random_trans', action='store_true', help='if random flip') |
|
parser.add_argument('--random_scale', action='store_true', help='if random flip') |
|
parser.add_argument('--random_rotate', action='store_true', help='if random flip') |
|
parser.add_argument('--random_bg', action='store_true', help='using random background') |
|
|
|
parser.add_argument('--schedule', type=int, nargs='+', default=[10, 15], |
|
help='Decrease learning rate at these epochs.') |
|
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.') |
|
parser.add_argument('--lambda_nml', type=float, default=0.0, help='weight of normal loss') |
|
parser.add_argument('--lambda_cmp_l1', type=float, default=0.0, help='weight of normal loss') |
|
parser.add_argument('--occ_loss_type', type=str, default='mse', help='bce | brock_bce | mse') |
|
parser.add_argument('--clr_loss_type', type=str, default='mse', help='mse | l1') |
|
parser.add_argument('--nml_loss_type', type=str, default='mse', help='mse | l1') |
|
parser.add_argument('--occ_gamma', type=float, default=None, help='weighting term') |
|
parser.add_argument('--no_finetune', action='store_true', help='fine tuning netG in training C') |
|
|
|
|
|
parser.add_argument('--val_test_error', action='store_true', help='validate errors of test data') |
|
parser.add_argument('--val_train_error', action='store_true', help='validate errors of train data') |
|
parser.add_argument('--gen_test_mesh', action='store_true', help='generate test mesh') |
|
parser.add_argument('--gen_train_mesh', action='store_true', help='generate train mesh') |
|
parser.add_argument('--all_mesh', action='store_true', help='generate meshs from all hourglass output') |
|
parser.add_argument('--num_gen_mesh_test', type=int, default=4, |
|
help='how many meshes to generate during testing') |
|
|
|
|
|
parser.add_argument('--load_netG_checkpoint_path', type=str, help='path to save checkpoints') |
|
parser.add_argument('--load_netC_checkpoint_path', type=str, help='path to save checkpoints') |
|
parser.add_argument('--checkpoints_path', type=str, default='./checkpoints', help='path to save checkpoints') |
|
parser.add_argument('--results_path', type=str, default='./results', help='path to save results ply') |
|
parser.add_argument('--load_checkpoint_path', type=str, help='path to save results ply') |
|
parser.add_argument('--single', type=str, default='', help='single data for training') |
|
|
|
|
|
parser.add_argument('--mask_path', type=str, help='path for input mask') |
|
parser.add_argument('--img_path', type=str, help='path for input image') |
|
|
|
|
|
parser.add_argument('--load_netMR_checkpoint_path', type=str, help='path to save checkpoints') |
|
parser.add_argument('--loadSizeBig', type=int, default=1024, help='load size of input image') |
|
parser.add_argument('--loadSizeLocal', type=int, default=512, help='load size of input image') |
|
parser.add_argument('--train_full_pifu', action='store_true', help='enable end-to-end training') |
|
parser.add_argument('--num_local', type=int, default=1, help='number of local cropping') |
|
|
|
|
|
parser.add_argument('--load_netFB_checkpoint_path', type=str, help='path to save checkpoints') |
|
parser.add_argument('--load_netF_checkpoint_path', type=str, help='path to save checkpoints') |
|
parser.add_argument('--load_netB_checkpoint_path', type=str, help='path to save checkpoints') |
|
parser.add_argument('--use_aio_normal', action='store_true') |
|
parser.add_argument('--use_front_normal', action='store_true') |
|
parser.add_argument('--use_back_normal', action='store_true') |
|
parser.add_argument('--no_intermediate_loss', action='store_true') |
|
|
|
|
|
group_aug = parser.add_argument_group('aug') |
|
group_aug.add_argument('--aug_alstd', type=float, default=0.0, help='augmentation pca lighting alpha std') |
|
group_aug.add_argument('--aug_bri', type=float, default=0.2, help='augmentation brightness') |
|
group_aug.add_argument('--aug_con', type=float, default=0.2, help='augmentation contrast') |
|
group_aug.add_argument('--aug_sat', type=float, default=0.05, help='augmentation saturation') |
|
group_aug.add_argument('--aug_hue', type=float, default=0.05, help='augmentation hue') |
|
group_aug.add_argument('--aug_gry', type=float, default=0.1, help='augmentation gray scale') |
|
group_aug.add_argument('--aug_blur', type=float, default=0.0, help='augmentation blur') |
|
|
|
|
|
parser.add_argument('--start_id', type=int, default=-1, help='load size of input image') |
|
parser.add_argument('--end_id', type=int, default=-1, help='load size of input image') |
|
|
|
|
|
self.initialized = True |
|
return parser |
|
|
|
def gather_options(self, args=None): |
|
|
|
if not self.initialized: |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser = self.initialize(parser) |
|
self.parser = parser |
|
|
|
if args is None: |
|
return self.parser.parse_args() |
|
else: |
|
return self.parser.parse_args(args) |
|
|
|
def print_options(self, opt): |
|
message = '' |
|
message += '----------------- Options ---------------\n' |
|
for k, v in sorted(vars(opt).items()): |
|
comment = '' |
|
default = self.parser.get_default(k) |
|
if v != default: |
|
comment = '\t[default: %s]' % str(default) |
|
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) |
|
message += '----------------- End -------------------' |
|
print(message) |
|
|
|
def parse(self, args=None): |
|
opt = self.gather_options(args) |
|
|
|
opt.sigma = opt.sigma_max |
|
|
|
if len(opt.mlp_res_layers) == 1 and opt.mlp_res_layers[0] < 1: |
|
opt.mlp_res_layers = [] |
|
|
|
return opt |
|
|