mambazjp's picture
Upload 58 files
355b5d6
raw
history blame
8.27 kB
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import trimesh
import trimesh.proximity
import trimesh.sample
import numpy as np
import math
import os
from PIL import Image
import argparse
def euler_to_rot_mat(r_x, r_y, r_z):
R_x = np.array([[1, 0, 0],
[0, math.cos(r_x), -math.sin(r_x)],
[0, math.sin(r_x), math.cos(r_x)]
])
R_y = np.array([[math.cos(r_y), 0, math.sin(r_y)],
[0, 1, 0],
[-math.sin(r_y), 0, math.cos(r_y)]
])
R_z = np.array([[math.cos(r_z), -math.sin(r_z), 0],
[math.sin(r_z), math.cos(r_z), 0],
[0, 0, 1]
])
R = np.dot(R_z, np.dot(R_y, R_x))
return R
class MeshEvaluator:
_normal_render = None
@staticmethod
def init_gl():
from .render.gl.normal_render import NormalRender
MeshEvaluator._normal_render = NormalRender(width=512, height=512)
def __init__(self):
pass
def set_mesh(self, src_path, tgt_path, scale_factor=1.0, offset=0):
self.src_mesh = trimesh.load(src_path)
self.tgt_mesh = trimesh.load(tgt_path)
self.scale_factor = scale_factor
self.offset = offset
def get_chamfer_dist(self, num_samples=10000):
# Chamfer
src_surf_pts, _ = trimesh.sample.sample_surface(self.src_mesh, num_samples)
tgt_surf_pts, _ = trimesh.sample.sample_surface(self.tgt_mesh, num_samples)
_, src_tgt_dist, _ = trimesh.proximity.closest_point(self.tgt_mesh, src_surf_pts)
_, tgt_src_dist, _ = trimesh.proximity.closest_point(self.src_mesh, tgt_surf_pts)
src_tgt_dist[np.isnan(src_tgt_dist)] = 0
tgt_src_dist[np.isnan(tgt_src_dist)] = 0
src_tgt_dist = src_tgt_dist.mean()
tgt_src_dist = tgt_src_dist.mean()
chamfer_dist = (src_tgt_dist + tgt_src_dist) / 2
return chamfer_dist
def get_surface_dist(self, num_samples=10000):
# P2S
src_surf_pts, _ = trimesh.sample.sample_surface(self.src_mesh, num_samples)
_, src_tgt_dist, _ = trimesh.proximity.closest_point(self.tgt_mesh, src_surf_pts)
src_tgt_dist[np.isnan(src_tgt_dist)] = 0
src_tgt_dist = src_tgt_dist.mean()
return src_tgt_dist
def _render_normal(self, mesh, deg):
view_mat = np.identity(4)
view_mat[:3, :3] *= 2 / 256
rz = deg / 180. * np.pi
model_mat = np.identity(4)
model_mat[:3, :3] = euler_to_rot_mat(0, rz, 0)
model_mat[1, 3] = self.offset
view_mat[2, 2] *= -1
self._normal_render.set_matrices(view_mat, model_mat)
self._normal_render.set_normal_mesh(self.scale_factor*mesh.vertices, mesh.faces, mesh.vertex_normals, mesh.faces)
self._normal_render.draw()
normal_img = self._normal_render.get_color()
return normal_img
def _get_reproj_normal_error(self, deg):
tgt_normal = self._render_normal(self.tgt_mesh, deg)
src_normal = self._render_normal(self.src_mesh, deg)
error = ((src_normal[:, :, :3] - tgt_normal[:, :, :3]) ** 2).mean() * 3
return error, src_normal, tgt_normal
def get_reproj_normal_error(self, frontal=True, back=True, left=True, right=True, save_demo_img=None):
# reproj error
# if save_demo_img is not None, save a visualization at the given path (etc, "./test.png")
if self._normal_render is None:
print("In order to use normal render, "
"you have to call init_gl() before initialing any evaluator objects.")
return -1
side_cnt = 0
total_error = 0
demo_list = []
if frontal:
side_cnt += 1
error, src_normal, tgt_normal = self._get_reproj_normal_error(0)
total_error += error
demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
if back:
side_cnt += 1
error, src_normal, tgt_normal = self._get_reproj_normal_error(180)
total_error += error
demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
if left:
side_cnt += 1
error, src_normal, tgt_normal = self._get_reproj_normal_error(90)
total_error += error
demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
if right:
side_cnt += 1
error, src_normal, tgt_normal = self._get_reproj_normal_error(270)
total_error += error
demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
if save_demo_img is not None:
res_array = np.concatenate(demo_list, axis=1)
res_img = Image.fromarray((res_array * 255).astype(np.uint8))
res_img.save(save_demo_img)
return total_error / side_cnt
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--root', type=str, required=True)
parser.add_argument('-t', '--tar_path', type=str, required=True)
args = parser.parse_args()
evaluator = MeshEvaluator()
evaluator.init_gl()
def run(root, exp_name, tar_path):
src_path = os.path.join(root, exp_name, 'recon')
rp_path = os.path.join(tar_path, 'RP', 'GEO', 'OBJ')
bf_path = os.path.join(tar_path, 'BUFF', 'GEO', 'PLY')
buff_files = [f for f in os.listdir(bf_path) if '.ply' in f]
src_names = ['0_0_00.obj', '90_0_00.obj', '180_0_00.obj', '270_0_00.obj']
total_vals = []
items = []
for file in buff_files:
tar_name = os.path.join(bf_path, file)
name = tar_name.split('/')[-1][:-4]
for src in src_names:
src_name = os.path.join(src_path, 'result_%s_%s' % (name, src))
if not os.path.exists(src_name):
continue
evaluator.set_mesh(src_name, tar_name, 0.13, -40)
vals = []
vals.append(0.1 * evaluator.get_chamfer_dist())
vals.append(0.1 * evaluator.get_surface_dist())
vals.append(4.0 * evaluator.get_reproj_normal_error(save_demo_img=os.path.join(src_path, '%s_%s.png' % (name, src[:-4]))))
item = {
'name': '%s_%s' % (name, src),
'vals': vals
}
total_vals.append(vals)
items.append(item)
vals = np.array(total_vals).mean(0)
buf_val = vals
np.save(os.path.join(root, exp_name, 'buff-item.npy'), np.array(items))
np.save(os.path.join(root, exp_name, 'buff-vals.npy'), total_vals)
rp_files = [f for f in os.listdir(rp_path) if '.obj' in f]
total_vals = []
items = []
for file in rp_files:
tar_name = os.path.join(rp_path, file)
name = tar_name.split('/')[-1][:-9]
for src in src_names:
src_name = os.path.join(src_path, 'result_%s_%s' % (name, src))
if not os.path.exists(src_name):
continue
evaluator.set_mesh(src_name, tar_name, 1.3, -120)
vals = []
vals.append(evaluator.get_chamfer_dist())
vals.append(evaluator.get_surface_dist())
vals.append(4.0 * evaluator.get_reproj_normal_error(save_demo_img=os.path.join(src_path, '%s_%s.png' % (name, src[:-4]))))
item = {
'name': '%s_%s' % (name, src),
'vals': vals
}
total_vals.append(vals)
items.append(item)
np.save(os.path.join(root, exp_name, 'rp-item.npy'), np.array(items))
np.save(os.path.join(root, exp_name, 'rp-vals.npy'), total_vals)
vals = np.array(total_vals).mean(0)
print('BUFF - chamfer: %.4f p2s: %.4f nml: %.4f' % (buf_val[0], buf_val[1], buf_val[2]))
print('RP - chamfer: %.4f p2s: %.4f nml: %.4f' % (vals[0], vals[1], vals[2]))
exp_list = ['pifuhd_final']
root = args.root
tar_path = args.tar_path
for exp in exp_list:
run(root, exp, tar_path)