|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : [email protected] |
|
@File : criterion.py |
|
@Time : 8/30/19 8:59 PM |
|
@Desc : |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
import torch.nn as nn |
|
import torch |
|
import numpy as np |
|
from torch.nn import functional as F |
|
from .lovasz_softmax import LovaszSoftmax |
|
from .kl_loss import KLDivergenceLoss |
|
from .consistency_loss import ConsistencyLoss |
|
|
|
NUM_CLASSES = 20 |
|
|
|
|
|
class CriterionAll(nn.Module): |
|
def __init__(self, use_class_weight=False, ignore_index=255, lambda_1=1, lambda_2=1, lambda_3=1, |
|
num_classes=20): |
|
super(CriterionAll, self).__init__() |
|
self.ignore_index = ignore_index |
|
self.use_class_weight = use_class_weight |
|
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=ignore_index) |
|
self.lovasz = LovaszSoftmax(ignore_index=ignore_index) |
|
self.kldiv = KLDivergenceLoss(ignore_index=ignore_index) |
|
self.reg = ConsistencyLoss(ignore_index=ignore_index) |
|
self.lamda_1 = lambda_1 |
|
self.lamda_2 = lambda_2 |
|
self.lamda_3 = lambda_3 |
|
self.num_classes = num_classes |
|
|
|
def parsing_loss(self, preds, target, cycle_n=None): |
|
""" |
|
Loss function definition. |
|
|
|
Args: |
|
preds: [[parsing result1, parsing result2],[edge result]] |
|
target: [parsing label, egde label] |
|
soft_preds: [[parsing result1, parsing result2],[edge result]] |
|
Returns: |
|
Calculated Loss. |
|
""" |
|
h, w = target[0].size(1), target[0].size(2) |
|
|
|
pos_num = torch.sum(target[1] == 1, dtype=torch.float) |
|
neg_num = torch.sum(target[1] == 0, dtype=torch.float) |
|
|
|
weight_pos = neg_num / (pos_num + neg_num) |
|
weight_neg = pos_num / (pos_num + neg_num) |
|
weights = torch.tensor([weight_neg, weight_pos]) |
|
|
|
loss = 0 |
|
|
|
|
|
preds_parsing = preds[0] |
|
for pred_parsing in preds_parsing: |
|
scale_pred = F.interpolate(input=pred_parsing, size=(h, w), |
|
mode='bilinear', align_corners=True) |
|
|
|
loss += 0.5 * self.lamda_1 * self.lovasz(scale_pred, target[0]) |
|
if target[2] is None: |
|
loss += 0.5 * self.lamda_1 * self.criterion(scale_pred, target[0]) |
|
else: |
|
soft_scale_pred = F.interpolate(input=target[2], size=(h, w), |
|
mode='bilinear', align_corners=True) |
|
soft_scale_pred = moving_average(soft_scale_pred, to_one_hot(target[0], num_cls=self.num_classes), |
|
1.0 / (cycle_n + 1.0)) |
|
loss += 0.5 * self.lamda_1 * self.kldiv(scale_pred, soft_scale_pred, target[0]) |
|
|
|
|
|
preds_edge = preds[1] |
|
for pred_edge in preds_edge: |
|
scale_pred = F.interpolate(input=pred_edge, size=(h, w), |
|
mode='bilinear', align_corners=True) |
|
if target[3] is None: |
|
loss += self.lamda_2 * F.cross_entropy(scale_pred, target[1], |
|
weights.cuda(), ignore_index=self.ignore_index) |
|
else: |
|
soft_scale_edge = F.interpolate(input=target[3], size=(h, w), |
|
mode='bilinear', align_corners=True) |
|
soft_scale_edge = moving_average(soft_scale_edge, to_one_hot(target[1], num_cls=2), |
|
1.0 / (cycle_n + 1.0)) |
|
loss += self.lamda_2 * self.kldiv(scale_pred, soft_scale_edge, target[0]) |
|
|
|
|
|
preds_parsing = preds[0] |
|
preds_edge = preds[1] |
|
for pred_parsing in preds_parsing: |
|
scale_pred = F.interpolate(input=pred_parsing, size=(h, w), |
|
mode='bilinear', align_corners=True) |
|
scale_edge = F.interpolate(input=preds_edge[0], size=(h, w), |
|
mode='bilinear', align_corners=True) |
|
loss += self.lamda_3 * self.reg(scale_pred, scale_edge, target[0]) |
|
|
|
return loss |
|
|
|
def forward(self, preds, target, cycle_n=None): |
|
loss = self.parsing_loss(preds, target, cycle_n) |
|
return loss |
|
|
|
def _generate_weights(self, masks, num_classes): |
|
""" |
|
masks: torch.Tensor with shape [B, H, W] |
|
""" |
|
masks_label = masks.data.cpu().numpy().astype(np.int64) |
|
pixel_nums = [] |
|
tot_pixels = 0 |
|
for i in range(num_classes): |
|
pixel_num_of_cls_i = np.sum(masks_label == i).astype(np.float) |
|
pixel_nums.append(pixel_num_of_cls_i) |
|
tot_pixels += pixel_num_of_cls_i |
|
weights = [] |
|
for i in range(num_classes): |
|
weights.append( |
|
(tot_pixels - pixel_nums[i]) / tot_pixels / (num_classes - 1) |
|
) |
|
weights = np.array(weights, dtype=np.float) |
|
|
|
return weights |
|
|
|
|
|
def moving_average(target1, target2, alpha=1.0): |
|
target = 0 |
|
target += (1.0 - alpha) * target1 |
|
target += target2 * alpha |
|
return target |
|
|
|
|
|
def to_one_hot(tensor, num_cls, dim=1, ignore_index=255): |
|
b, h, w = tensor.shape |
|
tensor[tensor == ignore_index] = 0 |
|
onehot_tensor = torch.zeros(b, num_cls, h, w).cuda() |
|
onehot_tensor.scatter_(dim, tensor.unsqueeze(dim), 1) |
|
return onehot_tensor |
|
|