|
|
|
|
|
|
|
""" |
|
@Author : Peike Li |
|
@Contact : [email protected] |
|
@File : AugmentCE2P.py |
|
@Time : 8/4/19 3:35 PM |
|
@Desc : |
|
@License : This source code is licensed under the license found in the |
|
LICENSE file in the root directory of this source tree. |
|
""" |
|
|
|
import functools |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
from modules import InPlaceABNSync |
|
|
|
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') |
|
|
|
affine_par = True |
|
|
|
pretrained_settings = { |
|
'resnet101': { |
|
'imagenet': { |
|
'input_space': 'BGR', |
|
'input_size': [3, 224, 224], |
|
'input_range': [0, 1], |
|
'mean': [0.406, 0.456, 0.485], |
|
'std': [0.225, 0.224, 0.229], |
|
'num_classes': 1000 |
|
} |
|
}, |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, fist_dilation=1, multi_grid=1): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False) |
|
self.bn2 = BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = BatchNorm2d(planes * 4) |
|
self.relu = nn.ReLU(inplace=False) |
|
self.relu_inplace = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.dilation = dilation |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out = out + residual |
|
out = self.relu_inplace(out) |
|
|
|
return out |
|
|
|
|
|
class PSPModule(nn.Module): |
|
""" |
|
Reference: |
|
Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* |
|
""" |
|
|
|
def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): |
|
super(PSPModule, self).__init__() |
|
|
|
self.stages = [] |
|
self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) |
|
self.bottleneck = nn.Sequential( |
|
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, |
|
bias=False), |
|
InPlaceABNSync(out_features), |
|
) |
|
|
|
def _make_stage(self, features, out_features, size): |
|
prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) |
|
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) |
|
bn = InPlaceABNSync(out_features) |
|
return nn.Sequential(prior, conv, bn) |
|
|
|
def forward(self, feats): |
|
h, w = feats.size(2), feats.size(3) |
|
priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in |
|
self.stages] + [feats] |
|
bottle = self.bottleneck(torch.cat(priors, 1)) |
|
return bottle |
|
|
|
|
|
class ASPPModule(nn.Module): |
|
""" |
|
Reference: |
|
Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* |
|
""" |
|
|
|
def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)): |
|
super(ASPPModule, self).__init__() |
|
|
|
self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), |
|
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, |
|
bias=False), |
|
InPlaceABNSync(inner_features)) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(inner_features)) |
|
self.conv3 = nn.Sequential( |
|
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), |
|
InPlaceABNSync(inner_features)) |
|
self.conv4 = nn.Sequential( |
|
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), |
|
InPlaceABNSync(inner_features)) |
|
self.conv5 = nn.Sequential( |
|
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), |
|
InPlaceABNSync(inner_features)) |
|
|
|
self.bottleneck = nn.Sequential( |
|
nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(out_features), |
|
nn.Dropout2d(0.1) |
|
) |
|
|
|
def forward(self, x): |
|
_, _, h, w = x.size() |
|
|
|
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) |
|
|
|
feat2 = self.conv2(x) |
|
feat3 = self.conv3(x) |
|
feat4 = self.conv4(x) |
|
feat5 = self.conv5(x) |
|
out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) |
|
|
|
bottle = self.bottleneck(out) |
|
return bottle |
|
|
|
|
|
class Edge_Module(nn.Module): |
|
""" |
|
Edge Learning Branch |
|
""" |
|
|
|
def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2): |
|
super(Edge_Module, self).__init__() |
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(mid_fea) |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(mid_fea) |
|
) |
|
self.conv3 = nn.Sequential( |
|
nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(mid_fea) |
|
) |
|
self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True) |
|
self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True) |
|
|
|
def forward(self, x1, x2, x3): |
|
_, _, h, w = x1.size() |
|
|
|
edge1_fea = self.conv1(x1) |
|
edge1 = self.conv4(edge1_fea) |
|
edge2_fea = self.conv2(x2) |
|
edge2 = self.conv4(edge2_fea) |
|
edge3_fea = self.conv3(x3) |
|
edge3 = self.conv4(edge3_fea) |
|
|
|
edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True) |
|
edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True) |
|
edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True) |
|
edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True) |
|
|
|
edge = torch.cat([edge1, edge2, edge3], dim=1) |
|
edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1) |
|
edge = self.conv5(edge) |
|
|
|
return edge, edge_fea |
|
|
|
|
|
class Decoder_Module(nn.Module): |
|
""" |
|
Parsing Branch Decoder Module. |
|
""" |
|
|
|
def __init__(self, num_classes): |
|
super(Decoder_Module, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(256) |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(48) |
|
) |
|
self.conv3 = nn.Sequential( |
|
nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(256), |
|
nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(256) |
|
) |
|
|
|
self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) |
|
|
|
def forward(self, xt, xl): |
|
_, _, h, w = xl.size() |
|
xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True) |
|
xl = self.conv2(xl) |
|
x = torch.cat([xt, xl], dim=1) |
|
x = self.conv3(x) |
|
seg = self.conv4(x) |
|
return seg, x |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, block, layers, num_classes): |
|
self.inplanes = 128 |
|
super(ResNet, self).__init__() |
|
self.conv1 = conv3x3(3, 64, stride=2) |
|
self.bn1 = BatchNorm2d(64) |
|
self.relu1 = nn.ReLU(inplace=False) |
|
self.conv2 = conv3x3(64, 64) |
|
self.bn2 = BatchNorm2d(64) |
|
self.relu2 = nn.ReLU(inplace=False) |
|
self.conv3 = conv3x3(64, 128) |
|
self.bn3 = BatchNorm2d(128) |
|
self.relu3 = nn.ReLU(inplace=False) |
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, multi_grid=(1, 1, 1)) |
|
|
|
self.context_encoding = PSPModule(2048, 512) |
|
|
|
self.edge = Edge_Module() |
|
self.decoder = Decoder_Module(num_classes) |
|
|
|
self.fushion = nn.Sequential( |
|
nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False), |
|
InPlaceABNSync(256), |
|
nn.Dropout2d(0.1), |
|
nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) |
|
) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
BatchNorm2d(planes * block.expansion, affine=affine_par)) |
|
|
|
layers = [] |
|
generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1 |
|
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, |
|
multi_grid=generate_multi_grid(0, multi_grid))) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append( |
|
block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.relu1(self.bn1(self.conv1(x))) |
|
x = self.relu2(self.bn2(self.conv2(x))) |
|
x = self.relu3(self.bn3(self.conv3(x))) |
|
x = self.maxpool(x) |
|
x2 = self.layer1(x) |
|
x3 = self.layer2(x2) |
|
x4 = self.layer3(x3) |
|
x5 = self.layer4(x4) |
|
x = self.context_encoding(x5) |
|
parsing_result, parsing_fea = self.decoder(x, x2) |
|
|
|
edge_result, edge_fea = self.edge(x2, x3, x4) |
|
|
|
x = torch.cat([parsing_fea, edge_fea], dim=1) |
|
fusion_result = self.fushion(x) |
|
return [[parsing_result, fusion_result], [edge_result]] |
|
|
|
|
|
def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'): |
|
model.input_space = settings['input_space'] |
|
model.input_size = settings['input_size'] |
|
model.input_range = settings['input_range'] |
|
model.mean = settings['mean'] |
|
model.std = settings['std'] |
|
|
|
if pretrained is not None: |
|
saved_state_dict = torch.load(pretrained) |
|
new_params = model.state_dict().copy() |
|
for i in saved_state_dict: |
|
i_parts = i.split('.') |
|
if not i_parts[0] == 'fc': |
|
new_params['.'.join(i_parts[0:])] = saved_state_dict[i] |
|
model.load_state_dict(new_params) |
|
|
|
|
|
def resnet101(num_classes=20, pretrained='./models/resnet101-imagenet.pth'): |
|
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes) |
|
settings = pretrained_settings['resnet101']['imagenet'] |
|
initialize_pretrained_model(model, settings, pretrained) |
|
return model |
|
|