mambazjp's picture
Upload 563 files
47162d0
raw
history blame
8.14 kB
from os import path
import torch
import torch.distributed as dist
import torch.autograd as autograd
import torch.cuda.comm as comm
from torch.autograd.function import once_differentiable
from torch.utils.cpp_extension import load
_src_path = path.join(path.dirname(path.abspath(__file__)), "src")
_backend = load(name="inplace_abn",
extra_cflags=["-O3"],
sources=[path.join(_src_path, f) for f in [
"inplace_abn.cpp",
"inplace_abn_cpu.cpp",
"inplace_abn_cuda.cu",
"inplace_abn_cuda_half.cu"
]],
extra_cuda_cflags=["--expt-extended-lambda"])
# Activation names
ACT_RELU = "relu"
ACT_LEAKY_RELU = "leaky_relu"
ACT_ELU = "elu"
ACT_NONE = "none"
def _check(fn, *args, **kwargs):
success = fn(*args, **kwargs)
if not success:
raise RuntimeError("CUDA Error encountered in {}".format(fn))
def _broadcast_shape(x):
out_size = []
for i, s in enumerate(x.size()):
if i != 1:
out_size.append(1)
else:
out_size.append(s)
return out_size
def _reduce(x):
if len(x.size()) == 2:
return x.sum(dim=0)
else:
n, c = x.size()[0:2]
return x.contiguous().view((n, c, -1)).sum(2).sum(0)
def _count_samples(x):
count = 1
for i, s in enumerate(x.size()):
if i != 1:
count *= s
return count
def _act_forward(ctx, x):
if ctx.activation == ACT_LEAKY_RELU:
_backend.leaky_relu_forward(x, ctx.slope)
elif ctx.activation == ACT_ELU:
_backend.elu_forward(x)
elif ctx.activation == ACT_NONE:
pass
def _act_backward(ctx, x, dx):
if ctx.activation == ACT_LEAKY_RELU:
_backend.leaky_relu_backward(x, dx, ctx.slope)
elif ctx.activation == ACT_ELU:
_backend.elu_backward(x, dx)
elif ctx.activation == ACT_NONE:
pass
class InPlaceABN(autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, running_mean, running_var,
training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01):
# Save context
ctx.training = training
ctx.momentum = momentum
ctx.eps = eps
ctx.activation = activation
ctx.slope = slope
ctx.affine = weight is not None and bias is not None
# Prepare inputs
count = _count_samples(x)
x = x.contiguous()
weight = weight.contiguous() if ctx.affine else x.new_empty(0)
bias = bias.contiguous() if ctx.affine else x.new_empty(0)
if ctx.training:
mean, var = _backend.mean_var(x)
# Update running stats
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean)
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * count / (count - 1))
# Mark in-place modified tensors
ctx.mark_dirty(x, running_mean, running_var)
else:
mean, var = running_mean.contiguous(), running_var.contiguous()
ctx.mark_dirty(x)
# BN forward + activation
_backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps)
_act_forward(ctx, x)
# Output
ctx.var = var
ctx.save_for_backward(x, var, weight, bias)
ctx.mark_non_differentiable(running_mean, running_var)
return x, running_mean, running_var
@staticmethod
@once_differentiable
def backward(ctx, dz, _drunning_mean, _drunning_var):
z, var, weight, bias = ctx.saved_tensors
dz = dz.contiguous()
# Undo activation
_act_backward(ctx, z, dz)
if ctx.training:
edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps)
else:
# TODO: implement simplified CUDA backward for inference mode
edz = dz.new_zeros(dz.size(1))
eydz = dz.new_zeros(dz.size(1))
dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps)
# dweight = eydz * weight.sign() if ctx.affine else None
dweight = eydz if ctx.affine else None
if dweight is not None:
dweight[weight < 0] *= -1
dbias = edz if ctx.affine else None
return dx, dweight, dbias, None, None, None, None, None, None, None
class InPlaceABNSync(autograd.Function):
@classmethod
def forward(cls, ctx, x, weight, bias, running_mean, running_var,
training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, equal_batches=True):
# Save context
ctx.training = training
ctx.momentum = momentum
ctx.eps = eps
ctx.activation = activation
ctx.slope = slope
ctx.affine = weight is not None and bias is not None
# Prepare inputs
ctx.world_size = dist.get_world_size() if dist.is_initialized() else 1
# count = _count_samples(x)
batch_size = x.new_tensor([x.shape[0]], dtype=torch.long)
x = x.contiguous()
weight = weight.contiguous() if ctx.affine else x.new_empty(0)
bias = bias.contiguous() if ctx.affine else x.new_empty(0)
if ctx.training:
mean, var = _backend.mean_var(x)
if ctx.world_size > 1:
# get global batch size
if equal_batches:
batch_size *= ctx.world_size
else:
dist.all_reduce(batch_size, dist.ReduceOp.SUM)
ctx.factor = x.shape[0] / float(batch_size.item())
mean_all = mean.clone() * ctx.factor
dist.all_reduce(mean_all, dist.ReduceOp.SUM)
var_all = (var + (mean - mean_all) ** 2) * ctx.factor
dist.all_reduce(var_all, dist.ReduceOp.SUM)
mean = mean_all
var = var_all
# Update running stats
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean)
count = batch_size.item() * x.view(x.shape[0], x.shape[1], -1).shape[-1]
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * (float(count) / (count - 1)))
# Mark in-place modified tensors
ctx.mark_dirty(x, running_mean, running_var)
else:
mean, var = running_mean.contiguous(), running_var.contiguous()
ctx.mark_dirty(x)
# BN forward + activation
_backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps)
_act_forward(ctx, x)
# Output
ctx.var = var
ctx.save_for_backward(x, var, weight, bias)
ctx.mark_non_differentiable(running_mean, running_var)
return x, running_mean, running_var
@staticmethod
@once_differentiable
def backward(ctx, dz, _drunning_mean, _drunning_var):
z, var, weight, bias = ctx.saved_tensors
dz = dz.contiguous()
# Undo activation
_act_backward(ctx, z, dz)
if ctx.training:
edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps)
edz_local = edz.clone()
eydz_local = eydz.clone()
if ctx.world_size > 1:
edz *= ctx.factor
dist.all_reduce(edz, dist.ReduceOp.SUM)
eydz *= ctx.factor
dist.all_reduce(eydz, dist.ReduceOp.SUM)
else:
edz_local = edz = dz.new_zeros(dz.size(1))
eydz_local = eydz = dz.new_zeros(dz.size(1))
dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps)
# dweight = eydz_local * weight.sign() if ctx.affine else None
dweight = eydz_local if ctx.affine else None
if dweight is not None:
dweight[weight < 0] *= -1
dbias = edz_local if ctx.affine else None
return dx, dweight, dbias, None, None, None, None, None, None, None
inplace_abn = InPlaceABN.apply
inplace_abn_sync = InPlaceABNSync.apply
__all__ = ["inplace_abn", "inplace_abn_sync", "ACT_RELU", "ACT_LEAKY_RELU", "ACT_ELU", "ACT_NONE"]