File size: 7,116 Bytes
8870024 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import h5py
import argparse
import numpy as np
import chumpy as ch
import cPickle as pkl
from opendr.camera import ProjectPoints
from opendr.renderer import BoundaryRenderer, ColoredRenderer
from tqdm import tqdm
from util import im, mesh
from util.logger import log
from lib.frame import setup_frame_rays
from lib.rays import ray_objective
from lib.geometry import laplacian
from lib.ch import sp_dot
from models.smpl import Smpl
from models.bodyparts import faces_no_hands, regularize_laplace, regularize_model, regularize_symmetry
def get_cb(frame, base_smpl, camera, frustum):
viz_mask = frame.mask / 255.
base_smpl.pose[:] = frame.pose
camera.t[:] = frame.trans
camera.rt[:] = 0
rn = ColoredRenderer(camera=camera, v=base_smpl, f=base_smpl.f, vc=np.ones_like(base_smpl),
frustum=frustum, bgcolor=0, num_channels=1)
def cb(_):
silh_diff = (rn.r - viz_mask + 1) / 2.
im.show(silh_diff, waittime=1)
return cb
def fit_consensus(frames, base_smpl, camera, frustum, model_data, nohands, icp_count, naked, display):
if nohands:
faces = faces_no_hands(base_smpl.f)
else:
faces = base_smpl.f
vis_rn_b = BoundaryRenderer(camera=camera, frustum=frustum, f=faces, num_channels=1)
vis_rn_m = ColoredRenderer(camera=camera, frustum=frustum, f=faces, vc=np.zeros_like(base_smpl), bgcolor=1,
num_channels=1)
model_template = Smpl(model_data)
model_template.betas[:] = base_smpl.betas.r
g_laplace = regularize_laplace()
g_model = regularize_model()
g_symmetry = regularize_symmetry()
for step, (w_laplace, w_model, w_symmetry, sigma) in enumerate(zip(
np.linspace(6.5, 4.0, icp_count) if naked else np.linspace(4.0, 2.0, icp_count),
np.linspace(0.9, 0.6, icp_count) if naked else np.linspace(0.6, 0.3, icp_count),
np.linspace(3.6, 1.8, icp_count),
np.linspace(0.06, 0.003, icp_count),
)):
log.info('# Step {}'.format(step))
L = laplacian(model_template.r, base_smpl.f)
delta = L.dot(model_template.r)
w_laplace *= g_laplace.reshape(-1, 1)
w_model *= g_model.reshape(-1, 1)
w_symmetry *= g_symmetry.reshape(-1, 1)
E = {
'laplace': (sp_dot(L, base_smpl.v_shaped_personal) - delta) * w_laplace,
'model': (base_smpl.v_shaped_personal - model_template) * w_model,
'symmetry': (base_smpl.v_personal + np.array([1, -1, -1])
* base_smpl.v_personal[model_data['vert_sym_idxs']]) * w_symmetry,
}
log.info('## Matching rays with contours')
for current, f in enumerate(tqdm(frames)):
E['silh_{}'.format(current)] = ray_objective(f, sigma, base_smpl, camera, vis_rn_b, vis_rn_m)
log.info('## Run optimization')
ch.minimize(
E,
[base_smpl.v_personal, model_template.betas],
method='dogleg',
options={'maxiter': 15, 'e_3': 0.001},
callback=get_cb(frames[0], base_smpl, camera, frustum) if display else None
)
def main(pose_file, masks_file, camera_file, out, obj_out, num, icp_count, model_file, first_frame, last_frame,
nohands, naked, display):
# load data
with open(model_file, 'rb') as fp:
model_data = pkl.load(fp)
with open(camera_file, 'rb') as fp:
camera_data = pkl.load(fp)
pose_data = h5py.File(pose_file, 'r')
poses = pose_data['pose'][first_frame:last_frame]
trans = pose_data['trans'][first_frame:last_frame]
masks = h5py.File(masks_file, 'r')['masks'][first_frame:last_frame]
num_frames = masks.shape[0]
indices_consensus = np.ceil(np.arange(num) * num_frames * 1. / num).astype(np.int)
# init
base_smpl = Smpl(model_data)
base_smpl.betas[:] = np.array(pose_data['betas'], dtype=np.float32)
camera = ProjectPoints(t=np.zeros(3), rt=np.zeros(3), c=camera_data['camera_c'],
f=camera_data['camera_f'], k=camera_data['camera_k'], v=base_smpl)
camera_t = camera_data['camera_t']
camera_rt = camera_data['camera_rt']
frustum = {'near': 0.1, 'far': 1000., 'width': int(camera_data['width']), 'height': int(camera_data['height'])}
frames = []
for i in indices_consensus:
log.info('Set up frame {}...'.format(i))
mask = np.array(masks[i] * 255, dtype=np.uint8)
pose_i = np.array(poses[i], dtype=np.float32)
trans_i = np.array(trans[i], dtype=np.float32)
frames.append(setup_frame_rays(base_smpl, camera, camera_t, camera_rt, pose_i, trans_i, mask))
log.info('Set up complete.')
log.info('Begin consensus fit...')
fit_consensus(frames, base_smpl, camera, frustum, model_data, nohands, icp_count, naked, display)
with open(out, 'wb') as fp:
pkl.dump({
'v_personal': base_smpl.v_personal.r,
'betas': base_smpl.betas.r,
}, fp, protocol=2)
if obj_out is not None:
base_smpl.pose[:] = 0
vt = np.load('assets/basicModel_vt.npy')
ft = np.load('assets/basicModel_ft.npy')
mesh.write(obj_out, base_smpl.r, base_smpl.f, vt=vt, ft=ft)
log.info('Done.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'pose_file',
type=str,
help="File that contains poses")
parser.add_argument(
'masks_file',
type=str,
help="File that contains segmentations")
parser.add_argument(
'camera',
type=str,
help="pkl file that contains camera settings")
parser.add_argument(
'out',
type=str,
help="Out file path")
parser.add_argument(
'--obj_out', '-oo',
default=None,
help='obj out file name (optional)')
parser.add_argument(
'--num', '-n', default=120, type=int,
help="Number of used frames")
parser.add_argument(
'--icp', '-i', default=3, type=int,
help="ICP Iterations")
parser.add_argument(
'--model', '-m',
default='vendor/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl',
help='Path to SMPL model')
parser.add_argument(
'--first_frame', '-f', default=0, type=int,
help="First frame to use")
parser.add_argument(
'--last_frame', '-l', default=2000, type=int,
help="Last frame to use")
parser.add_argument(
'--nohands', '-nh',
action='store_true',
help="Exclude hands from optimization")
parser.add_argument(
'--naked', '-nk',
action='store_true',
help="Person wears (almost) no clothing")
parser.add_argument(
'--display', '-d',
action='store_true',
help="Enable visualization")
args = parser.parse_args()
main(args.pose_file, args.masks_file, args.camera, args.out, args.obj_out, args.num, args.icp, args.model,
args.first_frame, args.last_frame, args.nohands, args.naked, args.display)
|