File size: 3,919 Bytes
355b5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
'''
MIT License
Copyright (c) 2019 Shunsuke Saito, Zeng Huang, and Ryota Natsume
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import numpy as np
def vec3(x, y, z):
return np.array([x, y, z], dtype=np.float32)
def radians(v):
return np.radians(v)
def identity():
return np.identity(4, dtype=np.float32)
def empty():
return np.zeros([4, 4], dtype=np.float32)
def magnitude(v):
return np.linalg.norm(v)
def normalize(v):
m = magnitude(v)
return v if m == 0 else v / m
def dot(u, v):
return np.sum(u * v)
def cross(u, v):
res = vec3(0, 0, 0)
res[0] = u[1] * v[2] - u[2] * v[1]
res[1] = u[2] * v[0] - u[0] * v[2]
res[2] = u[0] * v[1] - u[1] * v[0]
return res
# below functions can be optimized
def translate(m, v):
res = np.copy(m)
res[:, 3] = m[:, 0] * v[0] + m[:, 1] * v[1] + m[:, 2] * v[2] + m[:, 3]
return res
def rotate(m, angle, v):
a = angle
c = np.cos(a)
s = np.sin(a)
axis = normalize(v)
temp = (1 - c) * axis
rot = empty()
rot[0][0] = c + temp[0] * axis[0]
rot[0][1] = temp[0] * axis[1] + s * axis[2]
rot[0][2] = temp[0] * axis[2] - s * axis[1]
rot[1][0] = temp[1] * axis[0] - s * axis[2]
rot[1][1] = c + temp[1] * axis[1]
rot[1][2] = temp[1] * axis[2] + s * axis[0]
rot[2][0] = temp[2] * axis[0] + s * axis[1]
rot[2][1] = temp[2] * axis[1] - s * axis[0]
rot[2][2] = c + temp[2] * axis[2]
res = empty()
res[:, 0] = m[:, 0] * rot[0][0] + m[:, 1] * rot[0][1] + m[:, 2] * rot[0][2]
res[:, 1] = m[:, 0] * rot[1][0] + m[:, 1] * rot[1][1] + m[:, 2] * rot[1][2]
res[:, 2] = m[:, 0] * rot[2][0] + m[:, 1] * rot[2][1] + m[:, 2] * rot[2][2]
res[:, 3] = m[:, 3]
return res
def perspective(fovy, aspect, zNear, zFar):
tanHalfFovy = np.tan(fovy / 2)
res = empty()
res[0][0] = 1 / (aspect * tanHalfFovy)
res[1][1] = 1 / (tanHalfFovy)
res[2][3] = -1
res[2][2] = - (zFar + zNear) / (zFar - zNear)
res[3][2] = -(2 * zFar * zNear) / (zFar - zNear)
return res.T
def ortho(left, right, bottom, top, zNear, zFar):
# res = np.ones([4, 4], dtype=np.float32)
res = identity()
res[0][0] = 2 / (right - left)
res[1][1] = 2 / (top - bottom)
res[2][2] = - 2 / (zFar - zNear)
res[3][0] = - (right + left) / (right - left)
res[3][1] = - (top + bottom) / (top - bottom)
res[3][2] = - (zFar + zNear) / (zFar - zNear)
return res.T
def lookat(eye, center, up):
f = normalize(center - eye)
s = normalize(cross(f, up))
u = cross(s, f)
res = identity()
res[0][0] = s[0]
res[1][0] = s[1]
res[2][0] = s[2]
res[0][1] = u[0]
res[1][1] = u[1]
res[2][1] = u[2]
res[0][2] = -f[0]
res[1][2] = -f[1]
res[2][2] = -f[2]
res[3][0] = -dot(s, eye)
res[3][1] = -dot(u, eye)
res[3][2] = -dot(f, eye)
return res.T
def transform(d, m):
return np.dot(m, d.T).T
|