File size: 1,712 Bytes
47162d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pdb\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from simple_extractor import dataset_settings, get_palette"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "mask = np.load('/home/zjp/DeepDynamicFashion/Data_depth/xinyu_a/parsing_SCH_ATR/00000.npy')\n",
    "mask = Image.fromarray(mask.astype(np.uint8))\n",
    "palette = get_palette(dataset_settings['atr']['num_classes'])\n",
    "mask.putpalette(palette)\n",
    "mask.save('./00000.png')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "mask = np.load('/home/zjp/DeepDynamicFashion/REC-MV_preprocess/Data_depth/xinyu_a/parsing_SCH_ATR/mask_parsing_00000.npy')\n",
    "mask = Image.fromarray(mask.astype(np.uint8))\n",
    "palette = get_palette(dataset_settings['atr']['num_classes'])\n",
    "mask.putpalette(palette)\n",
    "mask.save('./mask_parsing_00000.png')\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "selfrecon_torch10.2+cu113",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.16"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}