File size: 1,712 Bytes
47162d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pdb\n",
"from PIL import Image"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from simple_extractor import dataset_settings, get_palette"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"mask = np.load('/home/zjp/DeepDynamicFashion/Data_depth/xinyu_a/parsing_SCH_ATR/00000.npy')\n",
"mask = Image.fromarray(mask.astype(np.uint8))\n",
"palette = get_palette(dataset_settings['atr']['num_classes'])\n",
"mask.putpalette(palette)\n",
"mask.save('./00000.png')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"mask = np.load('/home/zjp/DeepDynamicFashion/REC-MV_preprocess/Data_depth/xinyu_a/parsing_SCH_ATR/mask_parsing_00000.npy')\n",
"mask = Image.fromarray(mask.astype(np.uint8))\n",
"palette = get_palette(dataset_settings['atr']['num_classes'])\n",
"mask.putpalette(palette)\n",
"mask.save('./mask_parsing_00000.png')\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "selfrecon_torch10.2+cu113",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|