File size: 5,852 Bytes
47162d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : [email protected]
@File : simple_extractor.py
@Time : 8/30/19 8:59 PM
@Desc : Simple Extractor
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os, os.path as osp, pdb
import torch
import argparse
import numpy as np
from PIL import Image
from tqdm import tqdm
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import networks
from utils.transforms import transform_logits
from datasets.simple_extractor_dataset import SimpleFolderDataset
dataset_settings = {
'lip': {
'input_size': [473, 473],
'num_classes': 20,
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
},
'atr': {
'input_size': [512, 512],
'num_classes': 18,
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
},
'pascal': {
'input_size': [512, 512],
'num_classes': 7,
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
}
}
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
parser.add_argument("--dataset", type=str, default='lip', choices=['lip', 'atr', 'pascal'])
parser.add_argument("--model-restore", type=str, default='', help="restore pretrained model parameters.")
parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
parser.add_argument("--input-dir", type=str, default='', help="path of input image folder.")
parser.add_argument("--output-dir", type=str, default='', help="path of output image folder.")
parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.")
return parser.parse_args()
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def main():
args = get_arguments()
gpus = [int(i) for i in args.gpu.split(',')]
assert len(gpus) == 1
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
num_classes = dataset_settings[args.dataset]['num_classes']
input_size = dataset_settings[args.dataset]['input_size']
label = dataset_settings[args.dataset]['label']
print("Evaluating total class number {} with {}".format(num_classes, label))
model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None)
state_dict = torch.load(args.model_restore)['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model.cuda()
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
])
dataset = SimpleFolderDataset(root=args.input_dir, input_size=input_size, transform=transform)
dataloader = DataLoader(dataset)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
palette = get_palette(num_classes)
with torch.no_grad():
for idx, batch in enumerate(tqdm(dataloader)):
image, meta = batch
img_name = meta['name'][0]
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
output = model(image.cuda())
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
upsample_output = upsample(output[0][-1][0].unsqueeze(0))
upsample_output = upsample_output.squeeze()
upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
parsing_result = np.argmax(logits_result, axis=2)
#pdb.set_trace()
parsing_result_path = os.path.join(args.output_dir, img_name[:-4] + '.png')
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_img.putpalette(palette)
output_img.save(parsing_result_path)
if args.logits:
path1 = os.path.join(args.output_dir, f'mask_parsing_{img_name[:-4]}.npy')
path2 = osp.join(args.output_dir, f'{img_name[:-4]}.npy')
#pdb.set_trace()
np.save(path1, parsing_result)
np.save(path2, parsing_result)
return
if __name__ == '__main__':
main()
|