File size: 5,852 Bytes
47162d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Author  :   Peike Li
@Contact :   [email protected]
@File    :   simple_extractor.py
@Time    :   8/30/19 8:59 PM
@Desc    :   Simple Extractor
@License :   This source code is licensed under the license found in the
             LICENSE file in the root directory of this source tree.
"""

import os, os.path as osp, pdb
import torch
import argparse
import numpy as np
from PIL import Image
from tqdm import tqdm

from torch.utils.data import DataLoader
import torchvision.transforms as transforms

import networks
from utils.transforms import transform_logits
from datasets.simple_extractor_dataset import SimpleFolderDataset

dataset_settings = {
    'lip': {
        'input_size': [473, 473],
        'num_classes': 20,
        'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
                  'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
                  'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
    },
    'atr': {
        'input_size': [512, 512],
        'num_classes': 18,
        'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
                  'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
    },
    'pascal': {
        'input_size': [512, 512],
        'num_classes': 7,
        'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
    }
}


def get_arguments():
    """Parse all the arguments provided from the CLI.
    Returns:
      A list of parsed arguments.
    """
    parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")

    parser.add_argument("--dataset", type=str, default='lip', choices=['lip', 'atr', 'pascal'])
    parser.add_argument("--model-restore", type=str, default='', help="restore pretrained model parameters.")
    parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
    parser.add_argument("--input-dir", type=str, default='', help="path of input image folder.")
    parser.add_argument("--output-dir", type=str, default='', help="path of output image folder.")
    parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.")

    return parser.parse_args()


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.
    Args:
        num_cls: Number of classes
    Returns:
        The color map
    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


def main():
    args = get_arguments()

    gpus = [int(i) for i in args.gpu.split(',')]
    assert len(gpus) == 1
    if not args.gpu == 'None':
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    num_classes = dataset_settings[args.dataset]['num_classes']
    input_size = dataset_settings[args.dataset]['input_size']
    label = dataset_settings[args.dataset]['label']
    print("Evaluating total class number {} with {}".format(num_classes, label))

    model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None)

    state_dict = torch.load(args.model_restore)['state_dict']
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    model.cuda()
    model.eval()

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
    ])
    dataset = SimpleFolderDataset(root=args.input_dir, input_size=input_size, transform=transform)
    dataloader = DataLoader(dataset)

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    palette = get_palette(num_classes)
    with torch.no_grad():
        for idx, batch in enumerate(tqdm(dataloader)):
            image, meta = batch
            img_name = meta['name'][0]
            c = meta['center'].numpy()[0]
            s = meta['scale'].numpy()[0]
            w = meta['width'].numpy()[0]
            h = meta['height'].numpy()[0]

            output = model(image.cuda())
            upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
            upsample_output = upsample(output[0][-1][0].unsqueeze(0))
            upsample_output = upsample_output.squeeze()
            upsample_output = upsample_output.permute(1, 2, 0)  # CHW -> HWC

            logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
            parsing_result = np.argmax(logits_result, axis=2)
            #pdb.set_trace()

            parsing_result_path = os.path.join(args.output_dir, img_name[:-4] + '.png')
            output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
            output_img.putpalette(palette)
            output_img.save(parsing_result_path)
            if args.logits:
                path1 = os.path.join(args.output_dir, f'mask_parsing_{img_name[:-4]}.npy')
                path2 = osp.join(args.output_dir, f'{img_name[:-4]}.npy')

                #pdb.set_trace()
                np.save(path1, parsing_result)
                np.save(path2, parsing_result)
    return


if __name__ == '__main__':
    main()