File size: 11,888 Bytes
47162d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import argparse
import cv2
import os
import json
import numpy as np
from PIL import Image as PILImage
import joblib
def mask_nms(masks, bbox_scores, instances_confidence_threshold=0.5, overlap_threshold=0.7):
"""
NMS-like procedure used in Panoptic Segmentation
Remove the overlap areas of different instances in Instance Segmentation
"""
panoptic_seg = np.zeros(masks.shape[:2], dtype=np.uint8)
sorted_inds = list(range(len(bbox_scores)))
current_segment_id = 0
segments_score = []
for inst_id in sorted_inds:
score = bbox_scores[inst_id]
if score < instances_confidence_threshold:
break
mask = masks[:, :, inst_id]
mask_area = mask.sum()
if mask_area == 0:
continue
intersect = (mask > 0) & (panoptic_seg > 0)
intersect_area = intersect.sum()
if intersect_area * 1.0 / mask_area > overlap_threshold:
continue
if intersect_area > 0:
mask = mask & (panoptic_seg == 0)
current_segment_id += 1
# panoptic_seg[np.where(mask==1)] = current_segment_id
# panoptic_seg = panoptic_seg + current_segment_id*mask
panoptic_seg = np.where(mask == 0, panoptic_seg, current_segment_id)
segments_score.append(score)
# print(np.unique(panoptic_seg))
return panoptic_seg, segments_score
def extend(si, sj, instance_label, global_label, panoptic_seg_mask, class_map):
"""
"""
directions = [[-1, 0], [0, 1], [1, 0], [0, -1],
[1, 1], [1, -1], [-1, 1], [-1, -1]]
inst_class = instance_label[si, sj]
human_class = panoptic_seg_mask[si, sj]
global_class = class_map[inst_class]
queue = [[si, sj]]
while len(queue) != 0:
cur = queue[0]
queue.pop(0)
for direction in directions:
ni = cur[0] + direction[0]
nj = cur[1] + direction[1]
if ni >= 0 and nj >= 0 and \
ni < instance_label.shape[0] and \
nj < instance_label.shape[1] and \
instance_label[ni, nj] == 0 and \
global_label[ni, nj] == global_class:
instance_label[ni, nj] = inst_class
# Using refined instance label to refine human label
panoptic_seg_mask[ni, nj] = human_class
queue.append([ni, nj])
def refine(instance_label, panoptic_seg_mask, global_label, class_map):
"""
Inputs:
[ instance_label ]
np.array() with shape [h, w]
[ global_label ] with shape [h, w]
np.array()
"""
for i in range(instance_label.shape[0]):
for j in range(instance_label.shape[1]):
if instance_label[i, j] != 0:
extend(i, j, instance_label, global_label, panoptic_seg_mask, class_map)
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Inputs:
=num_cls=
Number of classes.
Returns:
The color map.
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def patch2img_output(patch_dir, img_name, img_height, img_width, bbox, bbox_type, num_class):
"""transform bbox patch outputs to image output"""
assert bbox_type == 'gt' or 'msrcnn'
output = np.zeros((img_height, img_width, num_class), dtype='float')
output[:, :, 0] = np.inf
count_predictions = np.zeros((img_height, img_width, num_class), dtype='int32')
for i in range(len(bbox)): # person index starts from 1
file_path = os.path.join(patch_dir, os.path.splitext(img_name)[0] + '_' + str(i + 1) + '_' + bbox_type + '.npy')
bbox_output = np.load(file_path)
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += bbox_output[:, :, 1:]
count_predictions[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += 1
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0] \
= np.minimum(output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0], bbox_output[:, :, 0])
# Caution zero dividing.
count_predictions[count_predictions == 0] = 1
return output / count_predictions
def get_instance(cat_gt, panoptic_seg_mask):
"""
"""
instance_gt = np.zeros_like(cat_gt, dtype=np.uint8)
num_humans = len(np.unique(panoptic_seg_mask)) - 1
class_map = {}
total_part_num = 0
for id in range(1, num_humans + 1):
human_part_label = np.where(panoptic_seg_mask == id, cat_gt, 0).astype(np.uint8)
# human_part_label = (np.where(panoptic_seg_mask==id) * cat_gt).astype(np.uint8)
part_classes = np.unique(human_part_label)
exceed = False
for part_id in part_classes:
if part_id == 0: # background
continue
total_part_num += 1
if total_part_num > 255:
print("total_part_num exceed, return current instance map: {}".format(total_part_num))
exceed = True
break
class_map[total_part_num] = part_id
instance_gt[np.where(human_part_label == part_id)] = total_part_num
if exceed:
break
# Make instance id continous.
ori_cur_labels = np.unique(instance_gt)
total_num_label = len(ori_cur_labels)
if instance_gt.max() + 1 != total_num_label:
for label in range(1, total_num_label):
instance_gt[instance_gt == ori_cur_labels[label]] = label
final_class_map = {}
for label in range(1, total_num_label):
if label >= 1:
final_class_map[label] = class_map[ori_cur_labels[label]]
return instance_gt, final_class_map
def compute_confidence(im_name, feature_map, class_map,
instance_label, output_dir,
panoptic_seg_mask, seg_score_list):
"""
"""
conf_file = open(os.path.join(output_dir, os.path.splitext(im_name)[0] + '.txt'), 'w')
weighted_map = np.zeros_like(feature_map[:, :, 0])
for index, score in enumerate(seg_score_list):
weighted_map += (panoptic_seg_mask == index + 1) * score
for label in class_map.keys():
cls = class_map[label]
confidence = feature_map[:, :, cls].reshape(-1)[np.where(instance_label.reshape(-1) == label)]
confidence = (weighted_map * feature_map[:, :, cls].copy()).reshape(-1)[
np.where(instance_label.reshape(-1) == label)]
confidence = confidence.sum() / len(confidence)
conf_file.write('{} {}\n'.format(cls, confidence))
conf_file.close()
def result_saving(fused_output, img_name, img_height, img_width, output_dir, mask_output_path, bbox_score, msrcnn_bbox):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
global_root = os.path.join(output_dir, 'global_parsing')
instance_root = os.path.join(output_dir, 'instance_parsing')
tag_dir = os.path.join(output_dir, 'global_tag')
if not os.path.exists(global_root):
os.makedirs(global_root)
if not os.path.exists(instance_root):
os.makedirs(instance_root)
if not os.path.exists(tag_dir):
os.makedirs(tag_dir)
# For visualizing indexed png image.
palette = get_palette(256)
fused_output = cv2.resize(fused_output, dsize=(img_width, img_height), interpolation=cv2.INTER_LINEAR)
seg_pred = np.asarray(np.argmax(fused_output, axis=2), dtype=np.uint8)
masks = np.load(mask_output_path)
masks[np.where(seg_pred == 0)] = 0
panoptic_seg_mask = masks
seg_score_list = bbox_score
instance_pred, class_map = get_instance(seg_pred, panoptic_seg_mask)
refine(instance_pred, panoptic_seg_mask, seg_pred, class_map)
compute_confidence(img_name, fused_output, class_map, instance_pred, instance_root,
panoptic_seg_mask, seg_score_list)
ins_seg_results = open(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.txt'), "a")
keep_human_id_list = list(np.unique(panoptic_seg_mask))
if 0 in keep_human_id_list:
keep_human_id_list.remove(0)
for i in keep_human_id_list:
ins_seg_results.write('{:.6f} {} {} {} {}\n'.format(seg_score_list[i - 1],
int(msrcnn_bbox[i - 1][1]), int(msrcnn_bbox[i - 1][0]),
int(msrcnn_bbox[i - 1][3]), int(msrcnn_bbox[i - 1][2])))
ins_seg_results.close()
output_im_global = PILImage.fromarray(seg_pred)
output_im_instance = PILImage.fromarray(instance_pred)
output_im_tag = PILImage.fromarray(panoptic_seg_mask)
output_im_global.putpalette(palette)
output_im_instance.putpalette(palette)
output_im_tag.putpalette(palette)
output_im_global.save(os.path.join(global_root, os.path.splitext(img_name)[0] + '.png'))
output_im_instance.save(os.path.join(instance_root, os.path.splitext(img_name)[0] + '.png'))
output_im_tag.save(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.png'))
def multi_process(a, args):
img_name = a['im_name']
img_height = a['img_height']
img_width = a['img_width']
msrcnn_bbox = a['person_bbox']
bbox_score = a['person_bbox_score']
######### loading outputs from gloabl and local models #########
global_output = np.load(os.path.join(args.global_output_dir, os.path.splitext(img_name)[0] + '.npy'))
msrcnn_output = patch2img_output(args.msrcnn_output_dir, img_name, img_height, img_width, msrcnn_bbox,
bbox_type='msrcnn', num_class=20)
gt_output = patch2img_output(args.gt_output_dir, img_name, img_height, img_width, msrcnn_bbox, bbox_type='msrcnn',
num_class=20)
#### global and local branch logits fusion #####
# fused_output = global_output + msrcnn_output + gt_output
fused_output = global_output + gt_output
mask_output_path = os.path.join(args.mask_output_dir, os.path.splitext(img_name)[0] + '_mask.npy')
result_saving(fused_output, img_name, img_height, img_width, args.save_dir, mask_output_path, bbox_score, msrcnn_bbox)
return
def main(args):
json_file = open(args.test_json_path)
anno = json.load(json_file)['root']
results = joblib.Parallel(n_jobs=24, verbose=10, pre_dispatch="all")(
[joblib.delayed(multi_process)(a, args) for i, a in enumerate(anno)]
)
def get_arguments():
parser = argparse.ArgumentParser(description="obtain final prediction by logits fusion")
parser.add_argument("--test_json_path", type=str, default='./data/CIHP/cascade_152_finetune/test.json')
parser.add_argument("--global_output_dir", type=str,
default='./data/CIHP/global/global_result-cihp-resnet101/global_output')
# parser.add_argument("--msrcnn_output_dir", type=str,
# default='./data/CIHP/cascade_152__finetune/msrcnn_result-cihp-resnet101/msrcnn_output')
parser.add_argument("--gt_output_dir", type=str,
default='./data/CIHP/cascade_152__finetune/gt_result-cihp-resnet101/gt_output')
parser.add_argument("--mask_output_dir", type=str, default='./data/CIHP/cascade_152_finetune/mask')
parser.add_argument("--save_dir", type=str, default='./data/CIHP/fusion_results/cihp-msrcnn_finetune')
return parser.parse_args()
if __name__ == '__main__':
args = get_arguments()
main(args)
|