File size: 14,385 Bytes
ef6a8c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
"""
@File: parsing_mask_to_fl.py
@Author: Lingteng Qiu
@Email: [email protected]
@Date: 2022-10-19
@Desc: parsing mask to polygons, given a series of mask infos
"""
import sys
sys.path.extend('./')
import argparse
import os
import glob
import os.path as osp
import numpy as np
import cv2
import pdb
import cv2
import json
from pytorch3d.ops.knn import knn_points
import torch
from utils.constant import FL_EXTRACT, TEMPLATE_GARMENT
'''
关于如何从parsing_mask提取featureline:
需要 parse_mask,标的两个点的json文件,但是如果出现了手遮挡住腰间的情况(或者头发遮挡neck),那么就要标注六个点绕过去
'''
FL_COLOR = {
'neck':(0, 0, 255),
'right_cuff': (0, 255, 0),
'left_cuff':(255, 0, 0),
'left_pant': (127, 127, 0),
'right_pant':(0, 127, 127),
'upper_bottom': (127, 0, 127),
'bottom_curve':(0, 127, 127),
}
def draw_lines(pts, color, img=None):
#pdb.set_trace()
if img is None:
img = np.zeros((1080, 1080, 3), np.uint8)
for i in range(len(pts)-1):
cv2.line(img, (int(pts[i][0]), int(pts[i][1])), (int(pts[i+1][0]), int(pts[i+1][1])), color, 2)
return img
def draw_pts(pts, color, img=None):
#pdb.set_trace()
if img is None:
img = np.zeros((1080, 1080, 3), np.uint8)
for i, pt in enumerate(pts):
cv2.circle(img, (int(pt[0]), int(pt[1])), 2, color, -1)
return img
class PolyMask(object):
def __init__(self, mask):
self.mask = mask
def query(self,query_sets ,labels, garment_key):
'''
query_sets 必须要偶数个 why?
1、计算featureline和mask的交点
2、如果交点数 > 2,找到一个交点对(两个交点),线段在特征线上并且在mask中的部分最长
3、通过这个交点对来获得featureline: 交点对 + 两点之间的mask边界
Args:
labels: only cloth?
'''
mask = np.zeros_like(self.mask, dtype= np.bool)
#pdb.set_trace()
for label in labels:
label_mask = np.zeros_like(self.mask, dtype =np.bool)
#pdb.set_trace()
i,j = np.where(self.mask == label)
label_mask[i,j] = True
mask |= label_mask
# [0, 255]
mask = mask.astype(np.uint8)*255
mask = self.smooth_noise(mask)
mask_polygons, mask_area = self.mask2polygon(mask)
# img_org = cv2.imread('./debug/多边形.png', -1)
# img=draw_lines(query_sets['neck'], (0, 255, 0), img_org)
length_dp = []
for mask_polygon in mask_polygons:
#pdb.set_trace()
dis = [0]
dis.extend([abs(mask_polygon[p_i][0]- mask_polygon[p_i+1][0]) + abs(mask_polygon[p_i][1]- mask_polygon[p_i+1][1]) for p_i in range(mask_polygon.shape[0]-1)])
dis.append(abs(mask_polygon[0][0]- mask_polygon[-1][0]) + abs(mask_polygon[0][1]- mask_polygon[-1][1]))
# 累计距离
dp = np.cumsum(dis)
length_dp.append(dp)
new_query_sets = {}
reply_pts = np.concatenate(mask_polygons, axis=0)
reply_pts = torch.from_numpy(reply_pts).float().cuda()
#pdb.set_trace()
for key in query_sets.keys():
polygon = query_sets[key]
# len(featureline points) % 2 == 0
assert polygon.shape[0] % 2 == 0
# 两两组合
polygons = polygon.reshape(-1, 2, 2)
group = []
for group_id, mask_polygon in enumerate(mask_polygons):
group.extend([group_id for i in range(mask_polygon.shape[0])])
group = torch.tensor(group).long()
new_polygons=[]
pre_polygon = None
# 循环每个顶点对
for polygon in polygons:
polygon = torch.from_numpy(polygon).float().cuda()
if pre_polygon is not None:
dis = torch.sqrt(((polygon[0] - pre_polygon[-1]) **2).sum())
# if two pts are close, directly add the polygon the new_polygons, avoid the situation that the hands or hair block the mask
if dis < 10:
new_polygons.append(polygon.detach().cpu().numpy())
pre_polygon = None
continue
pre_polygon = polygon.detach().clone()
# find the nearest edge in mask of the featureline
dist = knn_points(polygon[None], reply_pts[None])
idx = dist.idx[0, ...,0]
group_id = group[idx]
if dist.dists.max()>1000:
new_polygons.append(polygon.detach().cpu().numpy())
continue
# pick the id which is in a larger mask area => pick which the mask area
prefer_id = group_id[0] if mask_area[group_id[0]] > mask_area[group_id[1]] else group_id[1]
prefer_pts = torch.from_numpy(mask_polygons[prefer_id]).float().cuda()
# find the nearest edge in mask of the featureline two points
dist = knn_points(polygon[None], prefer_pts[None])
idx = dist.idx[0, ...,0].sort()
polygon= polygon[idx.indices]
idx=idx.values
reverse_flag = (not idx[0] == dist.idx[0, 0, 0])
# obtain slice_curve
dp = length_dp[prefer_id]
# compute the length of the two points in mask edge
# find the shortest path
slice_a = dp[idx[1]] - dp[idx[0]]
slice_b = dp[-1] - slice_a
#obtain slice_b
if slice_a>slice_b:
# 找最短的路径,当前这个edge的后一个点
segment = torch.cat([polygon[1:],prefer_pts[idx[1]:], prefer_pts[:idx[0]+1], polygon[0:1]], dim = 0)
reverse_flag = (not reverse_flag)
else:
segment = torch.cat([polygon[0:1], prefer_pts[idx[0]:idx[1]+1], polygon[1:]], dim=0)
segment = segment.detach().cpu().numpy()
if reverse_flag:
segment = segment[::-1]
new_polygons.append(segment)
new_polygons = np.concatenate(new_polygons, axis = 0)
new_query_sets[key] = new_polygons
#pdb.set_trace()
return new_query_sets, mask
def smooth_noise(self, mask):
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5, 5))
mask = cv2.erode(mask, kernel, iterations=2)
mask = cv2.dilate(mask, kernel, iterations=2)
return mask
def mask2polygon(self, mask):
contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# mask_new, contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
segmentation = []
polygon_size = []
for contour in contours:
contour_list = contour.flatten().tolist()
if len(contour_list) > 4:# and cv2.contourArea(contour)>10000
area = self.polygons_to_mask(mask.shape, contour_list).sum()
polygon_size.append(area)
contour_numpy = np.asarray(contour_list).reshape(-1, 2)
segmentation.append(contour_numpy)
return segmentation, polygon_size
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
polygons = np.asarray(polygons, np.int32) # 这里必须是int32,其他类型使用fillPoly会报错
shape=polygons.shape
polygons=polygons.reshape(-1,2)
cv2.fillPoly(mask, [polygons],color=1) # 非int32 会报错
return mask
def get_upper_bttom_type(parsing_type, key):
# 'ATR': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
# 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'],
ATR_PARSING = {
'upper':[4, 16, 17], # 4: upper-clothes, 16: Bag, 17: Scarf
#'upper':[4], # 4: upper-clothes, 16: Bag, 17: Scarf
#without head
# 'upper':[1, 2, 3, 4, 11, 16, 17],
'bottom':[5, 6, 8],
#'bottom':[5, 6 ], # 5: skirt, 6: pants, 8: belt
# with head and hand
#'upper_bottom':[4, 5, 6, 7 ]
'upper_bottom':[4, 5, 6, 7, 8, 16, 17]
}
CLO_PARSING = {
# with head and hand
'upper':[1,2,3],
#without head
# 'upper':[1, 2, 3, 4, 11, 16, 17],
'bottom':[1,2,3],
# with head and hand
'upper_bottom':[1,2,3]
# w/o hand
# 'upper_bottom':[4, 5, 7, 16, 17]
}
if parsing_type =='ATR':
return ATR_PARSING[key]
else:
return CLO_PARSING[key]
def get_parsing_label(parsing_type):
parsing_table ={
'ATR': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'],
'CLO':['background', 'upper', 'bottom', 'upper-bottom']
}
return parsing_table[parsing_type]
def get_parse():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--parsing_type', default='ATR', help='garment_parsing type', choices=['ATR', 'CLO'])
parser.add_argument('--input_path', default='', help='select model')
parser.add_argument('--output_path', default='', help='polygons output')
args = parser.parse_args()
return args
def parsing_curve(query_file, parsing_file, parsing_type, class_type, debug_path, name):
query_sets = {}
with open(query_file) as reader:
fl_infos = json.load(reader)
shapes = fl_infos['shapes']
for fl in shapes:
query_sets[fl['label']] = np.asarray(fl['points']).astype(np.float32)
class_table = dict(
female_outfit3=['upper_bottom'],
female_outfit1=['upper_bottom'],
anran_run = ['short_sleeve_upper', 'skirt'],
anran_tic = ['short_sleeve_upper', 'skirt'],
leyang_jump = ['dress'],
leyang_steps = ['dress'],
)
garment_table = dict(
short_sleeve_upper='upper',
skirt='bottom',
dress='upper_bottom',
long_sleeve_upper='upper',
long_pants='bottom',
short_pants='bottom',
)
masks = np.load(parsing_file, allow_pickle= True) # [H, W]
parsing_name = parsing_file.split('/')[-1]
poly_mask = PolyMask(masks)
new_query_sets = {}
for garment_key in TEMPLATE_GARMENT[class_type]:
pdb.set_trace()
garment_class = get_upper_bttom_type(parsing_type, garment_table[garment_key])
fl_names = 'bottom_curve' #FL_EXTRACT[garment_key]
fl_query_sets = {}
for fl_name in fl_names:
if fl_name in query_sets.keys():
fl_query_sets[fl_name] = query_sets[fl_name]
#pdb.set_trace()
new_fl_query_sets, mask = poly_mask.query(fl_query_sets, garment_class, garment_key)
new_query_sets.update(new_fl_query_sets)
cv2.imwrite(osp.join(debug_path, 'mask_{}_'.format(garment_key)+name), mask)
return new_query_sets, mask
def main(args):
# ATR, CLO
parsing_type = args.parsing_type
parsing_label = get_parsing_label(parsing_type)
parsing_dir = osp.join(args.input_path, 'parsing_SCH_{}'.format(parsing_type))
img_dir = osp.join(args.input_path, 'imgs/')
#json_files = sorted(glob.glob(osp.join(args.input_path, 'featurelines/*.json')))
json_files = sorted(glob.glob(osp.join(args.input_path, 'json_hand_label_no_bottom_curve/*.json')))
img_files = sorted(glob.glob(osp.join(img_dir, '*.jpg')))
img_files += sorted(glob.glob(osp.join(img_dir, '*.png')))
# get the id: 000342
json_key = [json_file.split('/')[-1][:-5] for json_file in json_files]
parsing_files = sorted(glob.glob(osp.join(parsing_dir,'*.npy')))
# given the small json files (less than no.imgs), find the corresponding parsing files and img files
filter_parsing_files = list(filter(lambda x: x.split('/')[-1].split('_')[-1][:-4] in json_key, parsing_files))
filter_img_files = list(filter(lambda x: x.split('/')[-1][:-4] in json_key, img_files))
if args.input_path[-1] =='/':
input_path = args.input_path[:-1]
else:
input_path = args.input_path
class_type = input_path.split('/')[-1]
debug_path = osp.join('./debug/{}/polymask'.format(class_type))
output_path = args.output_path
os.makedirs(output_path, exist_ok = True)
os.makedirs(debug_path, exist_ok= True)
for idx, (parsing_file, json_file, filter_img_file) in enumerate(zip(filter_parsing_files, json_files, filter_img_files)):
pdb.set_trace()
print('processing: {}'.format(filter_img_file))
img = cv2.imread(filter_img_file)
name = filter_img_file.split('/')[-1]
# if idx == 5:
# pdb.set_trace()
new_query_sets, mask = parsing_curve(json_file, parsing_file, args.parsing_type, class_type, debug_path, name)
with open(json_file) as reader:
fl_infos = json.load(reader)
shapes = fl_infos['shapes']
for fl in shapes:
# query_sets[fl['label']] = np.asarray(fl['points']).astype(np.float32)
fl['points']= new_query_sets[fl['label']].tolist()
json_name = json_file.split('/')[-1]
new_json_file = os.path.join(output_path, json_name)
with open(new_json_file, 'w') as writer:
json.dump(fl_infos, writer)
for key in new_query_sets.keys():
color = FL_COLOR[key]
pt_list = new_query_sets[key].astype(np.int)
for pt in new_query_sets[key].astype(np.int):
img = cv2.circle(img, (pt[0], pt[1]),2, color,2)
for pt_idx in range(pt_list.shape[0]-1):
img = cv2.line(img, (pt_list[pt_idx][0],pt_list[pt_idx][1]), (pt_list[pt_idx+1][0],pt_list[pt_idx+1][1]), color, 2)
cv2.imwrite(osp.join(debug_path, name), img)
if __name__ == '__main__':
args = get_parse()
main(args)
|