# coding=utf-8 # Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OPT model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class OPTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OPT [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50272): Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OPTModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of decoder layers. ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). do_layer_norm_before (`bool`, *optional*, defaults to `True`): Whether to perform layer normalization before the attention block. word_embed_proj_dim (`int`, *optional*): `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to `hidden_size`. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). enable_bias (`bool`, *optional*, defaults to `True`): Whether or not if the linear layers in the attention blocks should use the bias term. layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether or not if the layer norms should have learnable parameters. Example: ```python >>> from transformers import OPTConfig, OPTModel >>> # Initializing a OPT facebook/opt-large style configuration >>> configuration = OPTConfig() >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration >>> model = OPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "opt" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50272, hidden_size=768, num_hidden_layers=12, ffn_dim=3072, max_position_embeddings=2048, do_layer_norm_before=True, _remove_final_layer_norm=False, word_embed_proj_dim=None, dropout=0.1, attention_dropout=0.0, num_attention_heads=12, activation_function="relu", layerdrop=0.0, init_std=0.02, use_cache=True, pad_token_id=1, bos_token_id=2, eos_token_id=2, enable_bias=True, layer_norm_elementwise_affine=True, attn_implementation='eager', **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size self.ffn_dim = ffn_dim self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_function = activation_function self.init_std = init_std self.layerdrop = layerdrop self.use_cache = use_cache self.do_layer_norm_before = do_layer_norm_before # We keep these variables at `True` for backward compatibility. self.enable_bias = enable_bias self.layer_norm_elementwise_affine = layer_norm_elementwise_affine # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 self._remove_final_layer_norm = _remove_final_layer_norm self.attn_implementation = attn_implementation OPTConfig.register_for_auto_class()