File size: 6,814 Bytes
e20d3f0 69ae291 e20d3f0 5763f2b e20d3f0 ceadea2 64f43b6 e20d3f0 64f43b6 e20d3f0 f99725d e20d3f0 f99725d e20d3f0 69ae291 ceadea2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# coding=utf-8
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OPT model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class OPTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the OPT
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50272):
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OPTModel`]
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
do_layer_norm_before (`bool`, *optional*, defaults to `True`):
Whether to perform layer normalization before the attention block.
word_embed_proj_dim (`int`, *optional*):
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
`hidden_size`.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
enable_bias (`bool`, *optional*, defaults to `True`):
Whether or not if the linear layers in the attention blocks should use the bias term.
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether or not if the layer norms should have learnable parameters.
Example:
```python
>>> from transformers import OPTConfig, OPTModel
>>> # Initializing a OPT facebook/opt-large style configuration
>>> configuration = OPTConfig()
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
>>> model = OPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "opt"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50272,
hidden_size=768,
num_hidden_layers=12,
ffn_dim=3072,
max_position_embeddings=2048,
do_layer_norm_before=True,
_remove_final_layer_norm=False,
word_embed_proj_dim=None,
dropout=0.1,
attention_dropout=0.0,
num_attention_heads=12,
activation_function="relu",
layerdrop=0.0,
init_std=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=2,
eos_token_id=2,
enable_bias=True,
layer_norm_elementwise_affine=True,
#attn_implementation='eager',
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.num_attention_heads = num_attention_heads
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
self.ffn_dim = ffn_dim
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_function = activation_function
self.init_std = init_std
self.layerdrop = layerdrop
self.use_cache = use_cache
self.do_layer_norm_before = do_layer_norm_before
# We keep these variables at `True` for backward compatibility.
self.enable_bias = enable_bias
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
self._remove_final_layer_norm = _remove_final_layer_norm
#self.attn_implementation = attn_implementation
OPTConfig.register_for_auto_class() |