|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""OPT model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class OPTConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the OPT |
|
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50272): |
|
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`OPTModel`] |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of decoder layers. |
|
ffn_dim (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"relu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
do_layer_norm_before (`bool`, *optional*, defaults to `True`): |
|
Whether to perform layer normalization before the attention block. |
|
word_embed_proj_dim (`int`, *optional*): |
|
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to |
|
`hidden_size`. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more |
|
details. |
|
init_std (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
enable_bias (`bool`, *optional*, defaults to `True`): |
|
Whether or not if the linear layers in the attention blocks should use the bias term. |
|
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether or not if the layer norms should have learnable parameters. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import OPTConfig, OPTModel |
|
|
|
>>> # Initializing a OPT facebook/opt-large style configuration |
|
>>> configuration = OPTConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration |
|
>>> model = OPTModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "opt" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50272, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
ffn_dim=3072, |
|
max_position_embeddings=2048, |
|
do_layer_norm_before=True, |
|
_remove_final_layer_norm=False, |
|
word_embed_proj_dim=None, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
num_attention_heads=12, |
|
activation_function="relu", |
|
layerdrop=0.0, |
|
init_std=0.02, |
|
use_cache=True, |
|
pad_token_id=1, |
|
bos_token_id=2, |
|
eos_token_id=2, |
|
enable_bias=True, |
|
layer_norm_elementwise_affine=True, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.num_attention_heads = num_attention_heads |
|
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size |
|
self.ffn_dim = ffn_dim |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.layerdrop = layerdrop |
|
self.use_cache = use_cache |
|
self.do_layer_norm_before = do_layer_norm_before |
|
|
|
self.enable_bias = enable_bias |
|
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine |
|
|
|
|
|
|
|
|
|
self._remove_final_layer_norm = _remove_final_layer_norm |
|
|