--- tags: - generated_from_trainer datasets: - cnn_dailymail - xsum - samsum - billsum - lytang/MeetingBank-transcript metrics: - rouge model-index: - name: t5_xsum_samsum_billsum_cnn_dailymail results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.2373 license: mit language: - en library_name: transformers pipeline_tag: summarization --- # t5_xsum_samsum_billsum_cnn_dailymail The `t5_xsum_samsum_billsum_cnn_dailymail` model is a text summarization model fine-tuned on the `t5-base` architecture, which is a versatile text-to-text transfer transformer. This powerful model excels at generating abstractive summaries from input text. It has been fine-tuned on multiple datasets, including CNN/Daily Mail (cnn_dailymail), XSum (xsum), SamSum (samsum), BillSum (billsum), and the MeetingBank-transcript dataset by lytang. ## Intended Uses & Limitations ### Intended Uses - Document summarization: The model is well-suited for summarizing lengthy documents or articles, making it valuable for content curation and information extraction tasks. - Content generation: It can be used to generate concise summaries from input text, which is useful for creating short and informative snippets. ### Limitations - Model size: The model's size may require significant computational resources for deployment, limiting its use in resource-constrained environments. - Domain-specific content: While it performs well on general text summarization tasks, its performance may vary when applied to domain-specific content. ## Training and Evaluation Data The model has been trained on a diverse set of datasets, including CNN/Daily Mail, XSum, SamSum, BillSum, and the MeetingBank-transcript dataset. These datasets provide a wide range of text summarization examples, enabling the model to generalize across various domains and styles of text. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results #### samsum | Rouge1 | Rouge2 | RougeL | RougeLsum | |:-------:|:-------:|:-------:|:---------:| | 0.0138 | 0.0002 | 0.0138 | 0.0138 | #### CNN_Dailymail | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.8486 | 1.0 | 32300 | 1.6478 | 0.2373 | 0.1086 | 0.1972 | 0.1971 | 18.9674 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3