--- license: apache-2.0 language: - en - de - es - fr tags: - sft pipeline_tag: text-generation widget: - text: >- <|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|> - text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|> - text: >- <|prompter|>Write a story about future of AI development<|endoftext|><|assistant|> datasets: - OpenAssistant/oasst1 library_name: transformers --- [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]() I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information # falcon-7b-sft-top1-696 - GGUF - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant) - Original model: [falcon-7b-sft-top1-696](https://huggingface.co/OpenAssistant/falcon-7b-sft-top1-696) # K-Quants in Falcon 7b models New releases of Llama.cpp now support K-quantization for previously incompatible models, in particular all Falcon 7B models (While Falcon 40b is and always has been fully compatible with K-Quantisation). This is achieved by employing a fallback solution for model layers that cannot be quantized with real K-quants. For Falcon 7B models, although only a quarter of the layers can be quantized with true K-quants, this approach still benefits from utilizing *different* legacy quantization types Q4_0, Q4_1, Q5_0, and Q5_1. As a result, it offers better quality at the same file size or smaller file sizes with comparable performance. So this solution ensures improved performance and efficiency over legacy Q4_0, Q4_1, Q5_0 and Q5_1 Quantizations. --- # Brief Finally got the OpenAssistant falcon *sft* models working again * [falcon-7b-sft-top1-696](https://huggingface.co/OpenAssistant/falcon-7b-sft-top1-696) * [falcon-40b-sft-top1-560](https://huggingface.co/OpenAssistant/falcon-40b-sft-top1-560) * [falcon-40b-sft-mix-1226](https://huggingface.co/OpenAssistant/falcon-40b-sft-mix-1226) --- # About GGUF format `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library. A growing list of Software is using it and can therefore use this model. The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov # Quantization variants There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you: # Legacy quants Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types. Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants. ## Note: Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions. (This mainly refers to Falcon 7b and Starcoder models) # K-quants K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load. So, if possible, use K-quants. With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences. --- # Original Model Card: # Open-Assistant Falcon 7B SFT OASST-TOP1 Model This model is a fine-tuning of TII's [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) LLM. It was trained with 11,123 top-1 (high-quality) demonstrations of the OASST data set (exported on June 2, 2023) with a batch size of 128 for 8 epochs with LIMA style dropout (p=0.2) and a context-length of 2048 tokens. ## Model Details - **Finetuned from:** [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) - **Model type:** Causal decoder-only transformer language model - **Language:** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish); - **Weights & Biases:** [Training log](https://wandb.ai/open-assistant/public-sft/runs/25apbcld) (Checkpoint: 696 steps) - **Code:** [Open-Assistant/model/model_training](https://github.com/LAION-AI/Open-Assistant/tree/main/model/model_training) - **Demo:** [Continuations for 250 random prompts](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-06-05_OpenAssistant_falcon-7b-sft-top1-696_sampling_noprefix2.json) - **License:** Apache 2.0 - **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord) ## Prompting Two special tokens are used to mark the beginning of user and assistant turns: `<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token. Input prompt example: ``` <|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|> ``` The input ends with the `<|assistant|>` token to signal that the model should start generating the assistant reply. ## Sample Code ```python from transformers import AutoTokenizer import transformers import torch model = "OpenAssistant/falcon-7b-sft-top1-696" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) input_text="<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>" sequences = pipeline( input_text, max_length=500, do_sample=True, return_full_text=False, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Configuration Details Model: ``` falcon-7b: dtype: bf16 log_dir: "falcon_log_7b" learning_rate: 1e-5 model_name: "tiiuae/falcon-7b" deepspeed_config: configs/zero_config.json output_dir: falcon weight_decay: 0.0 max_length: 2048 save_strategy: steps eval_steps: 80 save_steps: 80 warmup_steps: 20 gradient_checkpointing: true gradient_accumulation_steps: 4 per_device_train_batch_size: 4 per_device_eval_batch_size: 8 num_train_epochs: 8 save_total_limit: 4 residual_dropout: 0.2 residual_dropout_lima: true ``` Dataset: ``` oasst-top1: # oasst_export: 11123 (100.00%) datasets: - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0 input_file_path: 2023-06-02_oasst_all_labels.jsonl.gz val_split: 0.05 top_k: 1 ``` Train command: ``` deepspeed trainer_sft.py --configs defaults falcon-7b oasst-top1 --cache_dir --output_dir --deepspeed ``` Export command: ``` python export_model.py --dtype bf16 --hf_repo_name OpenAssistant/falcon-7b-sft-top1 --trust_remote_code --auth_token --max_shard_size 2GB ``` ***End of original Model File*** --- ## Please consider to support my work **Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io) [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911) [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht) [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht) [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)