File size: 5,014 Bytes
8c0a5f0
683660e
9d356cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0a5f0
683660e
 
 
 
 
 
 
 
 
 
9ec7436
08440f3
9ec7436
683660e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8f496e
683660e
 
 
 
 
 
 
 
 
 
 
d61934d
 
5157c54
d61934d
683660e
 
3c41f7b
 
686095f
9d356cd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
license: cc-by-4.0
model-index:
- name: piccolo-8x7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.62
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.98
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.17
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.87
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.02
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
      name: Open LLM Leaderboard
---
# Piccolo-8x7b


  **In loving memory of my dog Klaus (Piccolo)**
    
  _~ Piccolo (Italian): the little one ~_

 ![piccolo.png](piccolo.png)


Based on mlabonne/NeuralBeagle-7b
Quants are available [here](https://huggingface.co/macadeliccc/piccolo-8x7b-GGUF)

# Code Example

Inference and Evaluation colab available [here](https://colab.research.google.com/drive/1ZqLNvVvtFHC_4v2CgcMVh7pP9Fvx0SbI?usp=sharing)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.
    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

model_id = "macadeliccc/piccolo-8x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)

prompt = "What is the best way to train Cane Corsos?"

print("Response:")
print(generate_response(prompt), "\n")
```

The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.

## Example output 

![example_output](https://huggingface.co/macadeliccc/piccolo-8x7b-GGUF/resolve/main/piccolo-llama-2.png)

# Evaluations

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/mN8jXeBsgTGL6fC09s5nx.png)

https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__piccolo-8x7b

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__piccolo-8x7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.80|
|AI2 Reasoning Challenge (25-Shot)|69.62|
|HellaSwag (10-Shot)              |86.98|
|MMLU (5-Shot)                    |64.13|
|TruthfulQA (0-shot)              |64.17|
|Winogrande (5-shot)              |79.87|
|GSM8k (5-shot)                   |72.02|