File size: 10,389 Bytes
d0bc785
d7db29e
 
2f63a51
d7db29e
2f63a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0bc785
d7db29e
 
 
3fb76a4
 
892c5c0
d7db29e
3e35f65
d7db29e
 
4913a05
 
 
 
10953f7
 
 
4913a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10953f7
4913a05
 
10953f7
4913a05
10953f7
4913a05
 
 
 
 
 
 
 
 
 
 
10953f7
4913a05
d7db29e
 
8bd0c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7db29e
 
 
 
 
 
 
 
 
 
 
 
ef27742
2f63a51
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
language:
- en
license: apache-2.0
library_name: transformers
model-index:
- name: SOLAR-math-2x10.7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.43
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.9
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.21
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 71.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b
      name: Open LLM Leaderboard
---

# 🌞🚀 SOLAR-math-2x10.7_19B 

+ This model is part of MoE experimentation. The other solar models in the collection are available [here](https://huggingface.co/collections/macadeliccc/solar-moe-65a2d28e3581a68c41381d5b)

+ If you like this model, version 2 is even better! It is competitve with GPT-3.5 Turbo and Gemini Pro. It exceeds the scores of Mixtral8x7b [macadeliccc/SOLAR-math-2x10.7b-v0.2](https://huggingface.co/macadeliccc/SOLAR-math-2x10.7b-v0.2)

![solar](solar-2.png)


## 🌅 Code Example

Example also available in [colab](https://colab.research.google.com/drive/10FWCLODU_EFclVOFOlxNYMmSiLilGMBZ?usp=sharing)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response


# Load the model and tokenizer
model_id = "macadeliccc/SOLAR-math-2x10.7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."


print("Response:")
print(generate_response(prompt), "\n")
```

## Evaluations 

|                                   Model                                   |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[SOLAR-math-2x10.7b](https://huggingface.co/macadeliccc/SOLAR-math-2x10.7b)|   47.2|  75.18|     64.73|   45.15|  58.07|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |30.31|±  |  2.89|
|                              |       |acc_norm|30.31|±  |  2.89|
|agieval_logiqa_en             |      0|acc     |43.78|±  |  1.95|
|                              |       |acc_norm|43.93|±  |  1.95|
|agieval_lsat_ar               |      0|acc     |21.74|±  |  2.73|
|                              |       |acc_norm|19.13|±  |  2.60|
|agieval_lsat_lr               |      0|acc     |57.25|±  |  2.19|
|                              |       |acc_norm|56.47|±  |  2.20|
|agieval_lsat_rc               |      0|acc     |68.77|±  |  2.83|
|                              |       |acc_norm|68.03|±  |  2.85|
|agieval_sat_en                |      0|acc     |78.16|±  |  2.89|
|                              |       |acc_norm|79.13|±  |  2.84|
|agieval_sat_en_without_passage|      0|acc     |47.57|±  |  3.49|
|                              |       |acc_norm|44.66|±  |  3.47|
|agieval_sat_math              |      0|acc     |41.36|±  |  3.33|
|                              |       |acc_norm|35.91|±  |  3.24|

Average: 47.2%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |59.22|±  |  1.44|
|             |       |acc_norm|61.43|±  |  1.42|
|arc_easy     |      0|acc     |84.26|±  |  0.75|
|             |       |acc_norm|83.63|±  |  0.76|
|boolq        |      1|acc     |88.69|±  |  0.55|
|hellaswag    |      0|acc     |65.98|±  |  0.47|
|             |       |acc_norm|84.29|±  |  0.36|
|openbookqa   |      0|acc     |34.20|±  |  2.12|
|             |       |acc_norm|47.20|±  |  2.23|
|piqa         |      0|acc     |81.83|±  |  0.90|
|             |       |acc_norm|82.59|±  |  0.88|
|winogrande   |      0|acc     |78.45|±  |  1.16|

Average: 75.18%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |48.47|±  |  1.75|
|             |       |mc2   |64.73|±  |  1.53|

Average: 64.73%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|61.05|±  |  3.55|
|bigbench_date_understanding                     |      0|multiple_choice_grade|68.56|±  |  2.42|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|35.27|±  |  2.98|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|31.20|±  |  2.45|
|                                                |       |exact_str_match      | 0.00|±  |  0.00|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|30.00|±  |  2.05|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|23.43|±  |  1.60|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|46.00|±  |  2.88|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|35.60|±  |  2.14|
|bigbench_navigate                               |      0|multiple_choice_grade|57.50|±  |  1.56|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|55.80|±  |  1.11|
|bigbench_ruin_names                             |      0|multiple_choice_grade|45.98|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|40.58|±  |  1.56|
|bigbench_snarks                                 |      0|multiple_choice_grade|66.85|±  |  3.51|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|71.40|±  |  1.44|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|56.40|±  |  1.57|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|24.00|±  |  1.21|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|17.09|±  |  0.90|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|46.00|±  |  2.88|

Average: 45.15%

Average score: 58.07%

Elapsed time: 04:05:27


### 📚 Citations 

```bibtex
@misc{kim2023solar,
      title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling}, 
      author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
      year={2023},
      eprint={2312.15166},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__SOLAR-math-2x10.7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.37|
|AI2 Reasoning Challenge (25-Shot)|68.43|
|HellaSwag (10-Shot)              |86.31|
|MMLU (5-Shot)                    |66.90|
|TruthfulQA (0-shot)              |64.21|
|Winogrande (5-shot)              |83.35|
|GSM8k (5-shot)                   |71.04|