File size: 1,680 Bytes
48ff8a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: csebuetnlp/mT5_m2m_crossSum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: en_bn_summarize_v8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# en_bn_summarize_v8
This model is a fine-tuned version of [csebuetnlp/mT5_m2m_crossSum](https://huggingface.co/csebuetnlp/mT5_m2m_crossSum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 2.6956
- Rouge2: 0.2754
- Rougel: 2.3694
- Rougelsum: 2.6129
- Gen Len: 28.045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 1.0 | 625 | nan | 2.6956 | 0.2754 | 2.3694 | 2.6129 | 28.045 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|