File size: 5,751 Bytes
ca770e9 0fadd5e ca770e9 0b7a4d0 0fadd5e a1d0285 bdddd1b a1d0285 bdddd1b a1d0285 bdddd1b a1d0285 4727c2e a1d0285 bdddd1b a1d0285 bdddd1b deabee8 f8985fb deabee8 f8985fb deabee8 1158ae6 a1d0285 bdddd1b a1d0285 bdddd1b a1d0285 bdddd1b a1d0285 bdddd1b a1d0285 0fadd5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
language:
- zh
- en
license: apache-2.0
tags:
- Cantonese
- Qwen2
- chat
datasets:
- jed351/cantonese-wikipedia
- raptorkwok/cantonese-traditional-chinese-parallel-corpus
pipeline_tag: text-generation
model-index:
- name: Qwen2-Cantonese-7B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 54.35
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.76
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.04
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.81
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.59
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
name: Open LLM Leaderboard
---
# Qwen2-Cantonese-7B-Instruct
## Model Overview / 模型概述
Qwen2-Cantonese-7B-Instruct is a Cantonese language model based on Qwen2-7B-Instruct, fine-tuned using LoRA. It aims to enhance Cantonese text generation and comprehension capabilities, supporting various tasks such as dialogue generation, text summarization, and question-answering.
Qwen2-Cantonese-7B-Instruct係基於Qwen2-7B-Instruct嘅粵語語言模型,使用LoRA進行微調。 它旨在提高粵語文本的生成和理解能力,支持各種任務,如對話生成、文本摘要和問答。
## Model Features / 模型特性
- **Base Model**: Qwen2-7B-Instruct
- **Fine-tuning Method**: LoRA instruction tuning
- **Training Steps**: 4572 steps
- **Primary Language**: Cantonese / 粵語
- **Datasets**:
- [jed351/cantonese-wikipedia](https://huggingface.co/datasets/jed351/cantonese-wikipedia)
- [raptorkwok/cantonese-traditional-chinese-parallel-corpus](https://huggingface.co/datasets/raptorkwok/cantonese-traditional-chinese-parallel-corpus)
- **Training Tools**: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)
## Quantized Version / 量化版本
A 4-bit quantized version of this model is also available: [qwen2-cantonese-7b-instruct-q4_0.gguf](https://huggingface.co/lordjia/Qwen2-Cantonese-7B-Instruct/blob/main/qwen2-cantonese-7b-instruct-q4_0.gguf).
此外,仲提供此模型嘅4位量化版本:[qwen2-cantonese-7b-instruct-q4_0.gguf](https://huggingface.co/lordjia/Qwen2-Cantonese-7B-Instruct/blob/main/qwen2-cantonese-7b-instruct-q4_0.gguf)。
## Alternative Model Recommendations / 備選模型舉薦
For alternatives, consider the following models, both fine-tuned by LordJia on Cantonese language tasks:
揾其他嘅話,可以諗下呢啲模型,全部都係LordJia用廣東話嘅工作調教好嘅:
1. [Llama-3-Cantonese-8B-Instruct](https://huggingface.co/lordjia/Llama-3-Cantonese-8B-Instruct) based on Meta-Llama-3-8B-Instruct.
2. [Llama-3.1-Cantonese-8B-Instruct](https://huggingface.co/lordjia/Llama-3.1-Cantonese-8B-Instruct) based on Meta-Llama-3.1-8B-Instruct.
## License / 許可證
This model is licensed under the Apache 2.0 license. Please review the terms before use.
此模型喺Apache 2.0許可證下獲得許可。 請在使用前仔細閱讀呢啲條款。
## Contributors / 貢獻
- LordJia [https://ai.chao.cool](https://ai.chao.cool/)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lordjia__Qwen2-Cantonese-7B-Instruct)
| Metric |Value|
|-------------------|----:|
|Avg. |23.50|
|IFEval (0-Shot) |54.35|
|BBH (3-Shot) |32.45|
|MATH Lvl 5 (4-Shot)| 8.76|
|GPQA (0-shot) | 6.04|
|MuSR (0-shot) | 7.81|
|MMLU-PRO (5-shot) |31.59|
|