Upload Model
Browse files- .gitignore +162 -0
- README.md +65 -0
- feature_extractor/preprocessor_config.json +28 -0
- lvd_pipeline.py +872 -0
- model_index.json +24 -0
- scheduler/scheduler_config.json +15 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +38 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +33 -0
- unet/diffusion_pytorch_model.safetensors +3 -0
- unet/lvd_unet_3d_condition.py +0 -0
- vae/config.json +32 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
*_ignored*
|
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- text-to-video
|
4 |
+
duplicated_from: diffusers/text-to-video-ms-1.7b
|
5 |
+
---
|
6 |
+
|
7 |
+
# LLM-grounded Video Diffusion Models
|
8 |
+
[Long Lian](https://tonylian.com/), [Baifeng Shi](https://bfshi.github.io/), [Adam Yala](https://www.adamyala.org/), [Trevor Darrell](https://people.eecs.berkeley.edu/~trevor/), [Boyi Li](https://sites.google.com/site/boyilics/home) at UC Berkeley/UCSF. **ICLR 2024**.
|
9 |
+
|
10 |
+
[Project Page](https://llm-grounded-video-diffusion.github.io/) | [Related Project: LMD](https://llm-grounded-diffusion.github.io/) | [Citation](https://llm-grounded-video-diffusion.github.io/#citation)
|
11 |
+
|
12 |
+
This model is based on [modelscope](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b) but with additional conditioning from bounding boxes in a [GLIGEN](https://gligen.github.io/) fashion.
|
13 |
+
|
14 |
+
Similar to [LLM-grounded Diffusion (LMD)](https://llm-grounded-diffusion.github.io/), LLM-grounded Video Diffusion (LVD)'s boxes-to-video stage allows cross-attention-based bounding box conditioning, which uses ModelScope off-the-shelf. This huggingface model offers an alternative: we train a GLIGEN model (i.e., transformer adapters) with ModelScope's weights without the temporal transformers blocks on [SA-1B](https://ai.meta.com/datasets/segment-anything/), treating it as a SD v2.1 model that has been fine-tuned to 256x256 resolution. We then merge the adapters into ModelScope to offer conditioning. The resulting model is in this hugginface model. This can be used with cross-attention-based conditioning or on its own, similar to [LMD+](https://github.com/TonyLianLong/LLM-groundedDiffusion). This can be used with LLM-based text-to-dynamic scene layout generator in LVD, or on its own as a video version of GLIGEN.
|
15 |
+
|
16 |
+
## Citation (LVD)
|
17 |
+
If you use our work, model, or our implementation in this repo, or find them helpful, please consider giving a citation.
|
18 |
+
```
|
19 |
+
@article{lian2023llmgroundedvideo,
|
20 |
+
title={LLM-grounded Video Diffusion Models},
|
21 |
+
author={Lian, Long and Shi, Baifeng and Yala, Adam and Darrell, Trevor and Li, Boyi},
|
22 |
+
journal={arXiv preprint arXiv:2309.17444},
|
23 |
+
year={2023},
|
24 |
+
}
|
25 |
+
|
26 |
+
@article{lian2023llmgrounded,
|
27 |
+
title={LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models},
|
28 |
+
author={Lian, Long and Li, Boyi and Yala, Adam and Darrell, Trevor},
|
29 |
+
journal={arXiv preprint arXiv:2305.13655},
|
30 |
+
year={2023}
|
31 |
+
}
|
32 |
+
```
|
33 |
+
|
34 |
+
## Citation (GLIGEN)
|
35 |
+
The adapters in this model are trained in a mannar similar to training GLIGEN adapters.
|
36 |
+
```
|
37 |
+
@article{li2023gligen,
|
38 |
+
title={GLIGEN: Open-Set Grounded Text-to-Image Generation},
|
39 |
+
author={Li, Yuheng and Liu, Haotian and Wu, Qingyang and Mu, Fangzhou and Yang, Jianwei and Gao, Jianfeng and Li, Chunyuan and Lee, Yong Jae},
|
40 |
+
journal={CVPR},
|
41 |
+
year={2023}
|
42 |
+
}
|
43 |
+
```
|
44 |
+
|
45 |
+
## Citation (ModelScope)
|
46 |
+
ModelScope is LVD's base model.
|
47 |
+
|
48 |
+
```
|
49 |
+
@article{wang2023modelscope,
|
50 |
+
title={Modelscope text-to-video technical report},
|
51 |
+
author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei},
|
52 |
+
journal={arXiv preprint arXiv:2308.06571},
|
53 |
+
year={2023}
|
54 |
+
}
|
55 |
+
@InProceedings{VideoFusion,
|
56 |
+
author = {Luo, Zhengxiong and Chen, Dayou and Zhang, Yingya and Huang, Yan and Wang, Liang and Shen, Yujun and Zhao, Deli and Zhou, Jingren and Tan, Tieniu},
|
57 |
+
title = {VideoFusion: Decomposed Diffusion Models for High-Quality Video Generation},
|
58 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
59 |
+
month = {June},
|
60 |
+
year = {2023}
|
61 |
+
}
|
62 |
+
```
|
63 |
+
|
64 |
+
## LICENSE
|
65 |
+
ModelScope follows CC-BY-NC 4.0 license. The gligen adapters are trained on SA-1B, which follows [SA-1B license](https://ai.meta.com/datasets/segment-anything/).
|
feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
12 |
+
"image_mean": [
|
13 |
+
0.48145466,
|
14 |
+
0.4578275,
|
15 |
+
0.40821073
|
16 |
+
],
|
17 |
+
"image_processor_type": "CLIPImageProcessor",
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 224
|
27 |
+
}
|
28 |
+
}
|
lvd_pipeline.py
ADDED
@@ -0,0 +1,872 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 LLM-grounded Video Diffusion Models (LVD) Team and The HuggingFace Team. All rights reserved.
|
2 |
+
# Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
|
3 |
+
# Copyright 2024 The ModelScope Team.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import warnings
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import numpy as np
|
23 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
24 |
+
from diffusers.models import AutoencoderKL
|
25 |
+
from diffusers.models.attention import GatedSelfAttentionDense
|
26 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
27 |
+
from diffusers.models.unets import UNet3DConditionModel
|
28 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
29 |
+
from diffusers.pipelines.text_to_video_synthesis import \
|
30 |
+
TextToVideoSDPipelineOutput
|
31 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
32 |
+
from diffusers.utils import (USE_PEFT_BACKEND, deprecate, logging,
|
33 |
+
replace_example_docstring, scale_lora_layers,
|
34 |
+
unscale_lora_layers)
|
35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
36 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
EXAMPLE_DOC_STRING = """
|
41 |
+
Examples:
|
42 |
+
```py
|
43 |
+
>>> import torch
|
44 |
+
>>> from diffusers import TextToVideoSDPipeline
|
45 |
+
>>> from diffusers.utils import export_to_video
|
46 |
+
|
47 |
+
>>> pipe = TextToVideoSDPipeline.from_pretrained(
|
48 |
+
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
|
49 |
+
... )
|
50 |
+
>>> pipe.enable_model_cpu_offload()
|
51 |
+
|
52 |
+
>>> prompt = "Spiderman is surfing"
|
53 |
+
>>> video_frames = pipe(prompt).frames
|
54 |
+
>>> video_path = export_to_video(video_frames)
|
55 |
+
>>> video_path
|
56 |
+
```
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
|
61 |
+
# This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
62 |
+
# reshape to ncfhw
|
63 |
+
mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1)
|
64 |
+
std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1)
|
65 |
+
# unnormalize back to [0,1]
|
66 |
+
video = video.mul_(std).add_(mean)
|
67 |
+
video.clamp_(0, 1)
|
68 |
+
# prepare the final outputs
|
69 |
+
i, c, f, h, w = video.shape
|
70 |
+
images = video.permute(2, 3, 0, 4, 1).reshape(
|
71 |
+
f, h, i * w, c
|
72 |
+
) # 1st (frames, h, batch_size, w, c) 2nd (frames, h, batch_size * w, c)
|
73 |
+
# prepare a list of indvidual (consecutive frames)
|
74 |
+
images = images.unbind(dim=0)
|
75 |
+
images = [(image.cpu().numpy() * 255).astype("uint8")
|
76 |
+
for image in images] # f h w c
|
77 |
+
return images
|
78 |
+
|
79 |
+
|
80 |
+
class GroundedTextToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
81 |
+
r"""
|
82 |
+
Pipeline for text-to-video generation.
|
83 |
+
|
84 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
85 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
86 |
+
|
87 |
+
The pipeline also inherits the following loading methods:
|
88 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
89 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
90 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
91 |
+
|
92 |
+
Args:
|
93 |
+
vae ([`AutoencoderKL`]):
|
94 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
95 |
+
text_encoder ([`CLIPTextModel`]):
|
96 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
97 |
+
tokenizer (`CLIPTokenizer`):
|
98 |
+
A [`~transformers.CLIPTokenizer`] to tokenize text.
|
99 |
+
unet ([`UNet3DConditionModel`]):
|
100 |
+
A [`UNet3DConditionModel`] to denoise the encoded video latents.
|
101 |
+
scheduler ([`SchedulerMixin`]):
|
102 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
103 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
104 |
+
"""
|
105 |
+
|
106 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vae: AutoencoderKL,
|
111 |
+
text_encoder: CLIPTextModel,
|
112 |
+
tokenizer: CLIPTokenizer,
|
113 |
+
unet: UNet3DConditionModel,
|
114 |
+
scheduler: KarrasDiffusionSchedulers,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
self.register_modules(
|
119 |
+
vae=vae,
|
120 |
+
text_encoder=text_encoder,
|
121 |
+
tokenizer=tokenizer,
|
122 |
+
unet=unet,
|
123 |
+
scheduler=scheduler,
|
124 |
+
)
|
125 |
+
self.vae_scale_factor = 2 ** (
|
126 |
+
len(self.vae.config.block_out_channels) - 1)
|
127 |
+
|
128 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
129 |
+
def enable_vae_slicing(self):
|
130 |
+
r"""
|
131 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
132 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
133 |
+
"""
|
134 |
+
self.vae.enable_slicing()
|
135 |
+
|
136 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
137 |
+
def disable_vae_slicing(self):
|
138 |
+
r"""
|
139 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
140 |
+
computing decoding in one step.
|
141 |
+
"""
|
142 |
+
self.vae.disable_slicing()
|
143 |
+
|
144 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
145 |
+
def enable_vae_tiling(self):
|
146 |
+
r"""
|
147 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
148 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
149 |
+
processing larger images.
|
150 |
+
"""
|
151 |
+
self.vae.enable_tiling()
|
152 |
+
|
153 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
154 |
+
def disable_vae_tiling(self):
|
155 |
+
r"""
|
156 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
157 |
+
computing decoding in one step.
|
158 |
+
"""
|
159 |
+
self.vae.disable_tiling()
|
160 |
+
|
161 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
162 |
+
def _encode_prompt(
|
163 |
+
self,
|
164 |
+
prompt,
|
165 |
+
device,
|
166 |
+
num_images_per_prompt,
|
167 |
+
do_classifier_free_guidance,
|
168 |
+
negative_prompt=None,
|
169 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
170 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
171 |
+
lora_scale: Optional[float] = None,
|
172 |
+
**kwargs,
|
173 |
+
):
|
174 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
175 |
+
deprecate("_encode_prompt()", "1.0.0",
|
176 |
+
deprecation_message, standard_warn=False)
|
177 |
+
|
178 |
+
prompt_embeds_tuple = self.encode_prompt(
|
179 |
+
prompt=prompt,
|
180 |
+
device=device,
|
181 |
+
num_images_per_prompt=num_images_per_prompt,
|
182 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
183 |
+
negative_prompt=negative_prompt,
|
184 |
+
prompt_embeds=prompt_embeds,
|
185 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
186 |
+
lora_scale=lora_scale,
|
187 |
+
**kwargs,
|
188 |
+
)
|
189 |
+
|
190 |
+
# concatenate for backwards comp
|
191 |
+
prompt_embeds = torch.cat(
|
192 |
+
[prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
193 |
+
|
194 |
+
return prompt_embeds
|
195 |
+
|
196 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
197 |
+
def encode_prompt(
|
198 |
+
self,
|
199 |
+
prompt,
|
200 |
+
device,
|
201 |
+
num_images_per_prompt,
|
202 |
+
do_classifier_free_guidance,
|
203 |
+
negative_prompt=None,
|
204 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
205 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
206 |
+
lora_scale: Optional[float] = None,
|
207 |
+
clip_skip: Optional[int] = None,
|
208 |
+
):
|
209 |
+
r"""
|
210 |
+
Encodes the prompt into text encoder hidden states.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
prompt (`str` or `List[str]`, *optional*):
|
214 |
+
prompt to be encoded
|
215 |
+
device: (`torch.device`):
|
216 |
+
torch device
|
217 |
+
num_images_per_prompt (`int`):
|
218 |
+
number of images that should be generated per prompt
|
219 |
+
do_classifier_free_guidance (`bool`):
|
220 |
+
whether to use classifier free guidance or not
|
221 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
222 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
223 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
224 |
+
less than `1`).
|
225 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
226 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
227 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
228 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
229 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
230 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
231 |
+
argument.
|
232 |
+
lora_scale (`float`, *optional*):
|
233 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
234 |
+
clip_skip (`int`, *optional*):
|
235 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
236 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
237 |
+
"""
|
238 |
+
# set lora scale so that monkey patched LoRA
|
239 |
+
# function of text encoder can correctly access it
|
240 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
241 |
+
self._lora_scale = lora_scale
|
242 |
+
|
243 |
+
# dynamically adjust the LoRA scale
|
244 |
+
if not USE_PEFT_BACKEND:
|
245 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
246 |
+
else:
|
247 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
248 |
+
|
249 |
+
if prompt is not None and isinstance(prompt, str):
|
250 |
+
batch_size = 1
|
251 |
+
elif prompt is not None and isinstance(prompt, list):
|
252 |
+
batch_size = len(prompt)
|
253 |
+
else:
|
254 |
+
batch_size = prompt_embeds.shape[0]
|
255 |
+
|
256 |
+
if prompt_embeds is None:
|
257 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
258 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
259 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
260 |
+
|
261 |
+
text_inputs = self.tokenizer(
|
262 |
+
prompt,
|
263 |
+
padding="max_length",
|
264 |
+
max_length=self.tokenizer.model_max_length,
|
265 |
+
truncation=True,
|
266 |
+
return_tensors="pt",
|
267 |
+
)
|
268 |
+
text_input_ids = text_inputs.input_ids
|
269 |
+
untruncated_ids = self.tokenizer(
|
270 |
+
prompt, padding="longest", return_tensors="pt").input_ids
|
271 |
+
|
272 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
273 |
+
text_input_ids, untruncated_ids
|
274 |
+
):
|
275 |
+
removed_text = self.tokenizer.batch_decode(
|
276 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
277 |
+
)
|
278 |
+
logger.warning(
|
279 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
280 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
281 |
+
)
|
282 |
+
|
283 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
284 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
285 |
+
else:
|
286 |
+
attention_mask = None
|
287 |
+
|
288 |
+
if clip_skip is None:
|
289 |
+
prompt_embeds = self.text_encoder(
|
290 |
+
text_input_ids.to(device), attention_mask=attention_mask)
|
291 |
+
prompt_embeds = prompt_embeds[0]
|
292 |
+
else:
|
293 |
+
prompt_embeds = self.text_encoder(
|
294 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
295 |
+
)
|
296 |
+
# Access the `hidden_states` first, that contains a tuple of
|
297 |
+
# all the hidden states from the encoder layers. Then index into
|
298 |
+
# the tuple to access the hidden states from the desired layer.
|
299 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
300 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
301 |
+
# representations. The `last_hidden_states` that we typically use for
|
302 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
303 |
+
# layer.
|
304 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(
|
305 |
+
prompt_embeds)
|
306 |
+
|
307 |
+
if self.text_encoder is not None:
|
308 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
309 |
+
elif self.unet is not None:
|
310 |
+
prompt_embeds_dtype = self.unet.dtype
|
311 |
+
else:
|
312 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
313 |
+
|
314 |
+
prompt_embeds = prompt_embeds.to(
|
315 |
+
dtype=prompt_embeds_dtype, device=device)
|
316 |
+
|
317 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
318 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
319 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
320 |
+
prompt_embeds = prompt_embeds.view(
|
321 |
+
bs_embed * num_images_per_prompt, seq_len, -1)
|
322 |
+
|
323 |
+
# get unconditional embeddings for classifier free guidance
|
324 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
325 |
+
uncond_tokens: List[str]
|
326 |
+
if negative_prompt is None:
|
327 |
+
uncond_tokens = [""] * batch_size
|
328 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
329 |
+
raise TypeError(
|
330 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
331 |
+
f" {type(prompt)}."
|
332 |
+
)
|
333 |
+
elif isinstance(negative_prompt, str):
|
334 |
+
uncond_tokens = [negative_prompt]
|
335 |
+
elif batch_size != len(negative_prompt):
|
336 |
+
raise ValueError(
|
337 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
338 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
339 |
+
" the batch size of `prompt`."
|
340 |
+
)
|
341 |
+
else:
|
342 |
+
uncond_tokens = negative_prompt
|
343 |
+
|
344 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
345 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
346 |
+
uncond_tokens = self.maybe_convert_prompt(
|
347 |
+
uncond_tokens, self.tokenizer)
|
348 |
+
|
349 |
+
max_length = prompt_embeds.shape[1]
|
350 |
+
uncond_input = self.tokenizer(
|
351 |
+
uncond_tokens,
|
352 |
+
padding="max_length",
|
353 |
+
max_length=max_length,
|
354 |
+
truncation=True,
|
355 |
+
return_tensors="pt",
|
356 |
+
)
|
357 |
+
|
358 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
359 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
360 |
+
else:
|
361 |
+
attention_mask = None
|
362 |
+
|
363 |
+
negative_prompt_embeds = self.text_encoder(
|
364 |
+
uncond_input.input_ids.to(device),
|
365 |
+
attention_mask=attention_mask,
|
366 |
+
)
|
367 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
368 |
+
|
369 |
+
if do_classifier_free_guidance:
|
370 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
371 |
+
seq_len = negative_prompt_embeds.shape[1]
|
372 |
+
|
373 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
374 |
+
dtype=prompt_embeds_dtype, device=device)
|
375 |
+
|
376 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
377 |
+
1, num_images_per_prompt, 1)
|
378 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
379 |
+
batch_size * num_images_per_prompt, seq_len, -1)
|
380 |
+
|
381 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
382 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
383 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
384 |
+
|
385 |
+
return prompt_embeds, negative_prompt_embeds
|
386 |
+
|
387 |
+
def decode_latents(self, latents):
|
388 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
389 |
+
|
390 |
+
batch_size, channels, num_frames, height, width = latents.shape
|
391 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(
|
392 |
+
batch_size * num_frames, channels, height, width)
|
393 |
+
|
394 |
+
image = self.vae.decode(latents).sample
|
395 |
+
video = (
|
396 |
+
image[None, :]
|
397 |
+
.reshape(
|
398 |
+
(
|
399 |
+
batch_size,
|
400 |
+
num_frames,
|
401 |
+
-1,
|
402 |
+
)
|
403 |
+
+ image.shape[2:]
|
404 |
+
)
|
405 |
+
.permute(0, 2, 1, 3, 4)
|
406 |
+
)
|
407 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
408 |
+
video = video.float()
|
409 |
+
return video
|
410 |
+
|
411 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
412 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
413 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
414 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
415 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
416 |
+
# and should be between [0, 1]
|
417 |
+
|
418 |
+
accepts_eta = "eta" in set(inspect.signature(
|
419 |
+
self.scheduler.step).parameters.keys())
|
420 |
+
extra_step_kwargs = {}
|
421 |
+
if accepts_eta:
|
422 |
+
extra_step_kwargs["eta"] = eta
|
423 |
+
|
424 |
+
# check if the scheduler accepts generator
|
425 |
+
accepts_generator = "generator" in set(
|
426 |
+
inspect.signature(self.scheduler.step).parameters.keys())
|
427 |
+
if accepts_generator:
|
428 |
+
extra_step_kwargs["generator"] = generator
|
429 |
+
return extra_step_kwargs
|
430 |
+
|
431 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
432 |
+
def check_inputs(
|
433 |
+
self,
|
434 |
+
prompt,
|
435 |
+
height,
|
436 |
+
width,
|
437 |
+
callback_steps,
|
438 |
+
lvd_gligen_phrases,
|
439 |
+
lvd_gligen_boxes,
|
440 |
+
negative_prompt=None,
|
441 |
+
prompt_embeds=None,
|
442 |
+
negative_prompt_embeds=None,
|
443 |
+
num_frames=None,
|
444 |
+
callback_on_step_end_tensor_inputs=None,
|
445 |
+
):
|
446 |
+
if height % 8 != 0 or width % 8 != 0:
|
447 |
+
raise ValueError(
|
448 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
449 |
+
|
450 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
451 |
+
raise ValueError(
|
452 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
453 |
+
f" {type(callback_steps)}."
|
454 |
+
)
|
455 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
456 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
457 |
+
):
|
458 |
+
raise ValueError(
|
459 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
460 |
+
)
|
461 |
+
|
462 |
+
if prompt is not None and prompt_embeds is not None:
|
463 |
+
raise ValueError(
|
464 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
465 |
+
" only forward one of the two."
|
466 |
+
)
|
467 |
+
elif prompt is None and prompt_embeds is None:
|
468 |
+
raise ValueError(
|
469 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
470 |
+
)
|
471 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
472 |
+
raise ValueError(
|
473 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
474 |
+
|
475 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
476 |
+
raise ValueError(
|
477 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
478 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
479 |
+
)
|
480 |
+
|
481 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
482 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
483 |
+
raise ValueError(
|
484 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
485 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
486 |
+
f" {negative_prompt_embeds.shape}."
|
487 |
+
)
|
488 |
+
|
489 |
+
if lvd_gligen_boxes:
|
490 |
+
if len(lvd_gligen_phrases) != num_frames or len(lvd_gligen_boxes) != num_frames:
|
491 |
+
raise ValueError(
|
492 |
+
"length of `lvd_gligen_phrases` and `lvd_gligen_boxes` has to be same and match `num_frames`, but"
|
493 |
+
f" got: `lvd_gligen_phrases` {len(lvd_gligen_phrases)}, `lvd_gligen_boxes` {len(lvd_gligen_boxes)}, `num_frames` {num_frames}"
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
for frame_index, (lvd_gligen_phrases_frame, lvd_gligen_boxes_frame) in enumerate(zip(lvd_gligen_phrases, lvd_gligen_boxes)):
|
497 |
+
if len(lvd_gligen_phrases_frame) != len(lvd_gligen_boxes_frame):
|
498 |
+
raise ValueError(
|
499 |
+
"length of `lvd_gligen_phrases` and `lvd_gligen_boxes` has to be same, but"
|
500 |
+
f" got: `lvd_gligen_phrases` {len(lvd_gligen_phrases_frame)} != `lvd_gligen_boxes` {len(lvd_gligen_boxes_frame)} at frame {frame_index}"
|
501 |
+
)
|
502 |
+
|
503 |
+
def prepare_latents(
|
504 |
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
505 |
+
):
|
506 |
+
shape = (
|
507 |
+
batch_size,
|
508 |
+
num_channels_latents,
|
509 |
+
num_frames,
|
510 |
+
height // self.vae_scale_factor,
|
511 |
+
width // self.vae_scale_factor,
|
512 |
+
)
|
513 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
514 |
+
raise ValueError(
|
515 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
516 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
517 |
+
)
|
518 |
+
|
519 |
+
if latents is None:
|
520 |
+
latents = randn_tensor(
|
521 |
+
shape, generator=generator, device=device, dtype=dtype)
|
522 |
+
else:
|
523 |
+
latents = latents.to(device)
|
524 |
+
|
525 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
526 |
+
latents = latents * self.scheduler.init_noise_sigma
|
527 |
+
return latents
|
528 |
+
|
529 |
+
def enable_fuser(self, enabled=True):
|
530 |
+
for module in self.unet.modules():
|
531 |
+
if type(module) is GatedSelfAttentionDense:
|
532 |
+
module.enabled = enabled
|
533 |
+
|
534 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
535 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
536 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
537 |
+
|
538 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
539 |
+
|
540 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
541 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
542 |
+
|
543 |
+
Args:
|
544 |
+
s1 (`float`):
|
545 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
546 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
547 |
+
s2 (`float`):
|
548 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
549 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
550 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
551 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
552 |
+
"""
|
553 |
+
if not hasattr(self, "unet"):
|
554 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
555 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
556 |
+
|
557 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
558 |
+
def disable_freeu(self):
|
559 |
+
"""Disables the FreeU mechanism if enabled."""
|
560 |
+
self.unet.disable_freeu()
|
561 |
+
|
562 |
+
@torch.no_grad()
|
563 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
564 |
+
def __call__(
|
565 |
+
self,
|
566 |
+
prompt: Union[str, List[str]] = None,
|
567 |
+
height: Optional[int] = None,
|
568 |
+
width: Optional[int] = None,
|
569 |
+
num_frames: int = 16,
|
570 |
+
num_inference_steps: int = 50,
|
571 |
+
guidance_scale: float = 9.0,
|
572 |
+
lvd_gligen_scheduled_sampling_beta: float = 0.3,
|
573 |
+
lvd_gligen_phrases: List[List[str]] = None,
|
574 |
+
lvd_gligen_boxes: List[List[List[float]]] = None,
|
575 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
576 |
+
eta: float = 0.0,
|
577 |
+
generator: Optional[Union[torch.Generator,
|
578 |
+
List[torch.Generator]]] = None,
|
579 |
+
latents: Optional[torch.FloatTensor] = None,
|
580 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
581 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
582 |
+
output_type: Optional[str] = "np",
|
583 |
+
return_dict: bool = True,
|
584 |
+
callback: Optional[Callable[[
|
585 |
+
int, int, torch.FloatTensor], None]] = None,
|
586 |
+
callback_steps: int = 1,
|
587 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
588 |
+
clip_skip: Optional[int] = None,
|
589 |
+
):
|
590 |
+
r"""
|
591 |
+
The call function to the pipeline for generation.
|
592 |
+
|
593 |
+
Args:
|
594 |
+
prompt (`str` or `List[str]`, *optional*):
|
595 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
596 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
597 |
+
The height in pixels of the generated video.
|
598 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
599 |
+
The width in pixels of the generated video.
|
600 |
+
num_frames (`int`, *optional*, defaults to 16):
|
601 |
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
602 |
+
amounts to 2 seconds of video.
|
603 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
604 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
605 |
+
expense of slower inference.
|
606 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
607 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
608 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
609 |
+
lvd_gligen_phrases (`List[str]`):
|
610 |
+
The phrases to guide what to include in each of the regions defined by the corresponding
|
611 |
+
`lvd_gligen_boxes`. There should only be one phrase per bounding box.
|
612 |
+
lvd_gligen_boxes (`List[List[float]]`):
|
613 |
+
The bounding boxes that identify rectangular regions of the image that are going to be filled with the
|
614 |
+
content described by the corresponding `lvd_gligen_phrases`. Each rectangular box is defined as a
|
615 |
+
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1].
|
616 |
+
lvd_gligen_scheduled_sampling_beta (`float`, defaults to 0.3):
|
617 |
+
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image
|
618 |
+
Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for
|
619 |
+
scheduled sampling during inference for improved quality and controllability.
|
620 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
621 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
622 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
623 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
624 |
+
The number of images to generate per prompt.
|
625 |
+
eta (`float`, *optional*, defaults to 0.0):
|
626 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
627 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
628 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
629 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
630 |
+
generation deterministic.
|
631 |
+
latents (`torch.FloatTensor`, *optional*):
|
632 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
633 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
634 |
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
635 |
+
`(batch_size, num_channel, num_frames, height, width)`.
|
636 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
637 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
638 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
639 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
640 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
641 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
642 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
643 |
+
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
|
644 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
645 |
+
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
646 |
+
of a plain tuple.
|
647 |
+
callback (`Callable`, *optional*):
|
648 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
649 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
650 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
651 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
652 |
+
every step.
|
653 |
+
cross_attention_kwargs (`dict`, *optional*):
|
654 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
655 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
656 |
+
clip_skip (`int`, *optional*):
|
657 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
658 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
659 |
+
Examples:
|
660 |
+
|
661 |
+
Returns:
|
662 |
+
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
663 |
+
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
664 |
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
665 |
+
"""
|
666 |
+
# 0. Default height and width to unet
|
667 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
668 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
669 |
+
|
670 |
+
num_images_per_prompt = 1
|
671 |
+
|
672 |
+
# 1. Check inputs. Raise error if not correct
|
673 |
+
self.check_inputs(
|
674 |
+
prompt, height, width, callback_steps, lvd_gligen_phrases,
|
675 |
+
lvd_gligen_boxes, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames
|
676 |
+
)
|
677 |
+
|
678 |
+
# 2. Define call parameters
|
679 |
+
if prompt is not None and isinstance(prompt, str):
|
680 |
+
batch_size = 1
|
681 |
+
elif prompt is not None and isinstance(prompt, list):
|
682 |
+
batch_size = len(prompt)
|
683 |
+
else:
|
684 |
+
batch_size = prompt_embeds.shape[0]
|
685 |
+
|
686 |
+
device = self._execution_device
|
687 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
688 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
689 |
+
# corresponds to doing no classifier free guidance.
|
690 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
691 |
+
|
692 |
+
# 3. Encode input prompt
|
693 |
+
text_encoder_lora_scale = (
|
694 |
+
cross_attention_kwargs.get(
|
695 |
+
"scale", None) if cross_attention_kwargs is not None else None
|
696 |
+
)
|
697 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
698 |
+
prompt,
|
699 |
+
device,
|
700 |
+
num_images_per_prompt,
|
701 |
+
do_classifier_free_guidance,
|
702 |
+
negative_prompt,
|
703 |
+
prompt_embeds=prompt_embeds,
|
704 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
705 |
+
lora_scale=text_encoder_lora_scale,
|
706 |
+
clip_skip=clip_skip,
|
707 |
+
)
|
708 |
+
# For classifier free guidance, we need to do two forward passes.
|
709 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
710 |
+
# to avoid doing two forward passes
|
711 |
+
if do_classifier_free_guidance:
|
712 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
713 |
+
|
714 |
+
# 4. Prepare timesteps
|
715 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
716 |
+
timesteps = self.scheduler.timesteps
|
717 |
+
|
718 |
+
# 5. Prepare latent variables
|
719 |
+
num_channels_latents = self.unet.config.in_channels
|
720 |
+
latents = self.prepare_latents(
|
721 |
+
batch_size * num_images_per_prompt,
|
722 |
+
num_channels_latents,
|
723 |
+
num_frames,
|
724 |
+
height,
|
725 |
+
width,
|
726 |
+
prompt_embeds.dtype,
|
727 |
+
device,
|
728 |
+
generator,
|
729 |
+
latents,
|
730 |
+
)
|
731 |
+
|
732 |
+
# 5.1 Prepare GLIGEN variables
|
733 |
+
if lvd_gligen_boxes:
|
734 |
+
max_objs = 30
|
735 |
+
boxes_all, text_embeddings_all, masks_all = [], [], []
|
736 |
+
for lvd_gligen_phrases_frame, lvd_gligen_boxes_frame in zip(lvd_gligen_phrases, lvd_gligen_boxes):
|
737 |
+
if len(lvd_gligen_boxes_frame) > max_objs:
|
738 |
+
warnings.warn(
|
739 |
+
f"More than {max_objs} objects found. Only first {max_objs} objects will be processed.",
|
740 |
+
FutureWarning,
|
741 |
+
)
|
742 |
+
lvd_gligen_phrases_frame = lvd_gligen_phrases_frame[:max_objs]
|
743 |
+
lvd_gligen_boxes_frame = lvd_gligen_boxes_frame[:max_objs]
|
744 |
+
|
745 |
+
# prepare batched input to the PositionNet (boxes, phrases, mask)
|
746 |
+
# Get tokens for phrases from pre-trained CLIPTokenizer
|
747 |
+
tokenizer_inputs = self.tokenizer(
|
748 |
+
lvd_gligen_phrases_frame, padding=True, return_tensors="pt").to(device)
|
749 |
+
# For the token, we use the same pre-trained text encoder
|
750 |
+
# to obtain its text feature
|
751 |
+
_text_embeddings = self.text_encoder(
|
752 |
+
**tokenizer_inputs).pooler_output
|
753 |
+
n_objs = len(lvd_gligen_boxes_frame)
|
754 |
+
# For each entity, described in phrases, is denoted with a bounding box,
|
755 |
+
# we represent the location information as (xmin,ymin,xmax,ymax)
|
756 |
+
boxes = torch.zeros(max_objs, 4, device=device,
|
757 |
+
dtype=self.text_encoder.dtype)
|
758 |
+
boxes[:n_objs] = torch.tensor(lvd_gligen_boxes_frame)
|
759 |
+
text_embeddings = torch.zeros(
|
760 |
+
max_objs, self.unet.cross_attention_dim, device=device, dtype=self.text_encoder.dtype
|
761 |
+
)
|
762 |
+
text_embeddings[:n_objs] = _text_embeddings
|
763 |
+
# Generate a mask for each object that is entity described by phrases
|
764 |
+
masks = torch.zeros(max_objs, device=device,
|
765 |
+
dtype=self.text_encoder.dtype)
|
766 |
+
masks[:n_objs] = 1
|
767 |
+
|
768 |
+
repeat_batch = batch_size * num_images_per_prompt
|
769 |
+
boxes = boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
|
770 |
+
text_embeddings = text_embeddings.unsqueeze(
|
771 |
+
0).expand(repeat_batch, -1, -1).clone()
|
772 |
+
masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone()
|
773 |
+
if do_classifier_free_guidance:
|
774 |
+
repeat_batch = repeat_batch * 2
|
775 |
+
boxes = torch.cat([boxes] * 2)
|
776 |
+
text_embeddings = torch.cat([text_embeddings] * 2)
|
777 |
+
masks = torch.cat([masks] * 2)
|
778 |
+
masks[: repeat_batch // 2] = 0
|
779 |
+
|
780 |
+
boxes_all.append(boxes)
|
781 |
+
text_embeddings_all.append(text_embeddings)
|
782 |
+
masks_all.append(masks)
|
783 |
+
|
784 |
+
if cross_attention_kwargs is None:
|
785 |
+
cross_attention_kwargs = {}
|
786 |
+
|
787 |
+
# In `UNet3DConditionModel`, there is a permute and reshape to merge batch dimension and frame dimension.
|
788 |
+
boxes_all = torch.stack(boxes_all, dim=1).flatten(0, 1)
|
789 |
+
text_embeddings_all = torch.stack(
|
790 |
+
text_embeddings_all, dim=1).flatten(0, 1)
|
791 |
+
masks_all = torch.stack(masks_all, dim=1).flatten(0, 1)
|
792 |
+
cross_attention_kwargs["gligen"] = {
|
793 |
+
"boxes": boxes_all, "positive_embeddings": text_embeddings_all, "masks": masks_all}
|
794 |
+
|
795 |
+
num_grounding_steps = int(
|
796 |
+
lvd_gligen_scheduled_sampling_beta * len(timesteps))
|
797 |
+
self.enable_fuser(True)
|
798 |
+
|
799 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
800 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
801 |
+
|
802 |
+
# 7. Denoising loop
|
803 |
+
num_warmup_steps = len(timesteps) - \
|
804 |
+
num_inference_steps * self.scheduler.order
|
805 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
806 |
+
for i, t in enumerate(timesteps):
|
807 |
+
# Scheduled sampling
|
808 |
+
if i == num_grounding_steps:
|
809 |
+
self.enable_fuser(False)
|
810 |
+
|
811 |
+
assert latents.shape[1] == 4, f"latent channel mismatch: {latents.shape}"
|
812 |
+
|
813 |
+
# expand the latents if we are doing classifier free guidance
|
814 |
+
latent_model_input = torch.cat(
|
815 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
816 |
+
latent_model_input = self.scheduler.scale_model_input(
|
817 |
+
latent_model_input, t)
|
818 |
+
|
819 |
+
# predict the noise residual
|
820 |
+
noise_pred = self.unet(
|
821 |
+
latent_model_input,
|
822 |
+
t,
|
823 |
+
encoder_hidden_states=prompt_embeds,
|
824 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
825 |
+
return_dict=False,
|
826 |
+
)[0]
|
827 |
+
|
828 |
+
# perform guidance
|
829 |
+
if do_classifier_free_guidance:
|
830 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
831 |
+
noise_pred = noise_pred_uncond + guidance_scale * \
|
832 |
+
(noise_pred_text - noise_pred_uncond)
|
833 |
+
|
834 |
+
# reshape latents
|
835 |
+
bsz, channel, frames, width, height = latents.shape
|
836 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(
|
837 |
+
bsz * frames, channel, width, height)
|
838 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(
|
839 |
+
bsz * frames, channel, width, height)
|
840 |
+
|
841 |
+
# compute the previous noisy sample x_t -> x_t-1
|
842 |
+
latents = self.scheduler.step(
|
843 |
+
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
844 |
+
|
845 |
+
# reshape latents back
|
846 |
+
latents = latents[None, :].reshape(
|
847 |
+
bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
848 |
+
|
849 |
+
# call the callback, if provided
|
850 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
851 |
+
progress_bar.update()
|
852 |
+
if callback is not None and i % callback_steps == 0:
|
853 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
854 |
+
callback(step_idx, t, latents)
|
855 |
+
|
856 |
+
if output_type == "latent":
|
857 |
+
return TextToVideoSDPipelineOutput(frames=latents)
|
858 |
+
|
859 |
+
video_tensor = self.decode_latents(latents)
|
860 |
+
|
861 |
+
if output_type == "pt":
|
862 |
+
video = video_tensor
|
863 |
+
else:
|
864 |
+
video = tensor2vid(video_tensor)
|
865 |
+
|
866 |
+
# Offload all models
|
867 |
+
self.maybe_free_model_hooks()
|
868 |
+
|
869 |
+
if not return_dict:
|
870 |
+
return (video,)
|
871 |
+
|
872 |
+
return TextToVideoSDPipelineOutput(frames=video)
|
model_index.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": ["lvd_pipeline", "GroundedTextToVideoSDPipeline"],
|
3 |
+
"_diffusers_version": "0.15.0.dev0",
|
4 |
+
"scheduler": [
|
5 |
+
"diffusers",
|
6 |
+
"DDIMScheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"CLIPTextModel"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"CLIPTokenizer"
|
15 |
+
],
|
16 |
+
"unet": [
|
17 |
+
"lvd_unet_3d_condition",
|
18 |
+
"GroundedUNet3DConditionModel"
|
19 |
+
],
|
20 |
+
"vae": [
|
21 |
+
"diffusers",
|
22 |
+
"AutoencoderKL"
|
23 |
+
]
|
24 |
+
}
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "PNDMScheduler",
|
3 |
+
"_diffusers_version": "0.25.0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"prediction_type": "epsilon",
|
10 |
+
"set_alpha_to_one": false,
|
11 |
+
"skip_prk_steps": true,
|
12 |
+
"steps_offset": 1,
|
13 |
+
"timestep_spacing": "leading",
|
14 |
+
"trained_betas": null
|
15 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "stabilityai/stable-diffusion-2-1-base",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 23,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 512,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.36.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc1827c465450322616f06dea41596eac7d493f4e95904dcb51f0fc745c4e13f
|
3 |
+
size 680820392
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "!",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49406": {
|
13 |
+
"content": "<|startoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49407": {
|
21 |
+
"content": "<|endoftext|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"bos_token": "<|startoftext|>",
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"do_lower_case": true,
|
32 |
+
"eos_token": "<|endoftext|>",
|
33 |
+
"errors": "replace",
|
34 |
+
"model_max_length": 77,
|
35 |
+
"pad_token": "!",
|
36 |
+
"tokenizer_class": "CLIPTokenizer",
|
37 |
+
"unk_token": "<|endoftext|>"
|
38 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "GroundedUNet3DConditionModel",
|
3 |
+
"_diffusers_version": "0.15.0.dev0",
|
4 |
+
"_name_or_path": "/home/tony/text-to-video-lvd-ms-1.7b/unet",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"attention_head_dim": 64,
|
7 |
+
"block_out_channels": [
|
8 |
+
320,
|
9 |
+
640,
|
10 |
+
1280,
|
11 |
+
1280
|
12 |
+
],
|
13 |
+
"cross_attention_dim": 1024,
|
14 |
+
"attention_type": "gated",
|
15 |
+
"down_block_types": [
|
16 |
+
"CrossAttnDownBlock3D",
|
17 |
+
"CrossAttnDownBlock3D",
|
18 |
+
"CrossAttnDownBlock3D",
|
19 |
+
"DownBlock3D"
|
20 |
+
],
|
21 |
+
"in_channels": 4,
|
22 |
+
"layers_per_block": 2,
|
23 |
+
"norm_eps": 1e-05,
|
24 |
+
"norm_num_groups": 32,
|
25 |
+
"out_channels": 4,
|
26 |
+
"sample_size": 32,
|
27 |
+
"up_block_types": [
|
28 |
+
"UpBlock3D",
|
29 |
+
"CrossAttnUpBlock3D",
|
30 |
+
"CrossAttnUpBlock3D",
|
31 |
+
"CrossAttnUpBlock3D"
|
32 |
+
]
|
33 |
+
}
|
unet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dceac428332747f495856e61fb6e452400401a1a9e6120ce7fde2e2ee5e3a06a
|
3 |
+
size 3247808680
|
unet/lvd_unet_3d_condition.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vae/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.25.0",
|
4 |
+
"_name_or_path": "stabilityai/stable-diffusion-2-1-base",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D"
|
17 |
+
],
|
18 |
+
"force_upcast": true,
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 4,
|
21 |
+
"layers_per_block": 2,
|
22 |
+
"norm_num_groups": 32,
|
23 |
+
"out_channels": 3,
|
24 |
+
"sample_size": 768,
|
25 |
+
"scaling_factor": 0.18215,
|
26 |
+
"up_block_types": [
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D",
|
30 |
+
"UpDecoderBlock2D"
|
31 |
+
]
|
32 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e4c08995484ee61270175e9e7a072b66a6e4eeb5f0c266667fe1f45b90daf9a
|
3 |
+
size 167335342
|