--- license: mit library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k base_model: microsoft/phi-2 model-index: - name: phi-2-sft-ultrachat-qlora results: [] --- # phi-2-sft-ultrachat-qlora This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.2498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2922 | 0.06 | 500 | 1.2498 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.14.6 - Tokenizers 0.15.2