doberst commited on
Commit
6e05097
1 Parent(s): d6f6129

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -3,7 +3,7 @@ license: apache-2.0
3
  inference: false
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
@@ -11,10 +11,10 @@ inference: false
11
 
12
  slim-sentiment has been fine-tuned for **topic analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
 
14
- &nbsp;&nbsp;&nbsp;&nbsp;`{"topic": ["..."]}`
15
 
16
 
17
- SLIM models are designed to provide a flexible natural language generative model that can be used as part of a multi-step, multi-model LLM-based automation workflow.
18
 
19
  Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](https://huggingface.co/llmware/slim-topics-tool).
20
 
@@ -22,7 +22,7 @@ Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](
22
  ## Prompt format:
23
 
24
  `function = "classify"`
25
- `params = "topic"`
26
  `prompt = "<human> " + {text} + "\n" + `
27
  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
28
 
@@ -74,7 +74,7 @@ Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](
74
 
75
  from llmware.models import ModelCatalog
76
  slim_model = ModelCatalog().load_model("llmware/slim-topics")
77
- response = slim_model.function_call(text,params=["topic"], function="classify")
78
 
79
  print("llmware - llm_response: ", response)
80
 
 
3
  inference: false
4
  ---
5
 
6
+ # SLIM-TOPICS
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
 
11
 
12
  slim-sentiment has been fine-tuned for **topic analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
 
14
+ &nbsp;&nbsp;&nbsp;&nbsp;`{"topics": ["..."]}`
15
 
16
 
17
+ SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.
18
 
19
  Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](https://huggingface.co/llmware/slim-topics-tool).
20
 
 
22
  ## Prompt format:
23
 
24
  `function = "classify"`
25
+ `params = "topics"`
26
  `prompt = "<human> " + {text} + "\n" + `
27
  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
28
 
 
74
 
75
  from llmware.models import ModelCatalog
76
  slim_model = ModelCatalog().load_model("llmware/slim-topics")
77
+ response = slim_model.function_call(text,params=["topics"], function="classify")
78
 
79
  print("llmware - llm_response: ", response)
80