Upload README.md
Browse files
README.md
CHANGED
@@ -1,36 +1,33 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
**bling-tiny-llama-ov** is an OpenVino int4 quantized version of BLING Tiny-Llama 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
|
11 |
-
|
12 |
-
[**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents.
|
13 |
-
|
14 |
-
Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
|
15 |
-
|
16 |
-
Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmware.ai)
|
17 |
|
|
|
18 |
|
19 |
### Model Description
|
20 |
|
21 |
-
- **Developed by:**
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
|
|
25 |
- **Language(s) (NLP):** English
|
26 |
- **License:** Apache 2.0
|
27 |
-
- **Uses:**
|
28 |
-
- **RAG Benchmark Accuracy Score:**
|
29 |
- **Quantization:** int4
|
30 |
|
31 |
|
32 |
## Model Card Contact
|
33 |
|
|
|
|
|
34 |
[llmware on hf](https://www.huggingface.co/llmware)
|
35 |
|
36 |
[llmware website](https://www.llmware.ai)
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
inference: false
|
4 |
+
tags: [green, p1, llmware-encoder, ov]
|
5 |
---
|
6 |
|
7 |
+
# unitary-toxic-roberta-ov
|
8 |
|
9 |
+
**unitary-toxic-roberta-ov** is a toxicity classifier from [unitary/unbiased-toxic-roberta](https://www.huggingface.com/unitary/unbiased-toxic-roberta), packaged in OpenVino format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
The classifier can be used to evaluate toxic content in a prompt or in model output.
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
+
- **Developed by:** unitary
|
16 |
+
- **Quantized by:** llmware
|
17 |
+
- **Model type:** roberta
|
18 |
+
- **Parameters:** 125 million
|
19 |
+
- **Model Parent:** unitary/unbiased-toxic-roberta
|
20 |
- **Language(s) (NLP):** English
|
21 |
- **License:** Apache 2.0
|
22 |
+
- **Uses:** Prompt safety
|
23 |
+
- **RAG Benchmark Accuracy Score:** NA
|
24 |
- **Quantization:** int4
|
25 |
|
26 |
|
27 |
## Model Card Contact
|
28 |
|
29 |
+
[llmware on github](https://www.github.com/llmware-ai/llmware)
|
30 |
+
|
31 |
[llmware on hf](https://www.huggingface.co/llmware)
|
32 |
|
33 |
[llmware website](https://www.llmware.ai)
|