hkiyomaru commited on
Commit
146d4d0
1 Parent(s): 0946031

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +158 -0
README.md CHANGED
@@ -1,3 +1,161 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ library_name: transformers
21
+ pipeline_tag: text-generation
22
+ inference: false
23
  ---
24
+ # llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0
25
+
26
+ This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan.
27
+
28
+ | Model Variant |
29
+ | :--- |
30
+ |**Instruction models**|
31
+ | [llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) |
32
+ | [llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) |
33
+ | [llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) |
34
+
35
+
36
+ | |
37
+ | :--- |
38
+ |**Pre-trained models**|
39
+ | [llm-jp-13b-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-v2.0) |
40
+
41
+ Checkpoints format: Hugging Face Transformers
42
+
43
+
44
+ ## Required Libraries and Their Versions
45
+
46
+ - torch>=2.3.0
47
+ - transformers>=4.40.1
48
+ - tokenizers>=0.19.1
49
+ - accelerate>=0.29.3
50
+ - flash-attn>=2.5.8
51
+
52
+ ## Usage
53
+
54
+ ```python
55
+ import torch
56
+ from transformers import AutoTokenizer, AutoModelForCausalLM
57
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0")
58
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0", device_map="auto", torch_dtype=torch.float16)
59
+ text = "自然言語処理とは何か"
60
+ tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device)
61
+ with torch.no_grad():
62
+ output = model.generate(
63
+ tokenized_input,
64
+ max_new_tokens=100,
65
+ do_sample=True,
66
+ top_p=0.95,
67
+ temperature=0.7,
68
+ repetition_penalty=1.05,
69
+ )[0]
70
+ print(tokenizer.decode(output))
71
+ ```
72
+
73
+
74
+ ## Model Details
75
+
76
+ - **Model type:** Transformer-based Language Model
77
+ - **Total seen tokens:** 256B
78
+
79
+ |Model|Params|Layers|Hidden size|Heads|Context length|
80
+ |:---:|:---:|:---:|:---:|:---:|:---:|
81
+ |13b model|13b|40|5120|40|4096|
82
+
83
+
84
+ ## Training
85
+
86
+ - **Pre-training:**
87
+ - **Hardware:** 128 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
88
+ - **Software:** Megatron-LM
89
+
90
+ - **Instruction tuning:**
91
+ - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
92
+ - **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed)
93
+
94
+ ## Tokenizer
95
+
96
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
97
+ The vocabulary entries were converted from [`llm-jp-tokenizer v2.2 (100k: code20K_en40K_ja60K.ver2.2)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.2).
98
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
99
+
100
+ - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
101
+ - **Training algorithm:** Marging Code/English/Japanese vocabularies constructed with SentencePiece Unigram byte-fallback and reestimating scores with the EM-algorithm.
102
+ - **Training data:** A subset of the datasets for model pre-training
103
+ - **Vocabulary size:** 96,867 (mixed vocabulary of Japanese, English, and source code)
104
+ - The acutal size of vocabulary in the pretrained model is 97,024 due to round-up to multiples of 256.
105
+
106
+
107
+ ## Datasets
108
+
109
+ ### Pre-training
110
+
111
+ The models have been pre-trained using a blend of the following datasets.
112
+
113
+ | Language | Dataset | Tokens|
114
+ |:---|:---|---:|
115
+ |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.4B
116
+ ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v2)|130.7B
117
+ |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|4.7B
118
+ ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|110.3B
119
+ |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|8.7B
120
+
121
+ ### Instruction tuning
122
+
123
+ The models have been fine-tuned on the following datasets.
124
+
125
+ | Language | Dataset | description |
126
+ |:---|:---|:---|
127
+ |Japanese|[ichikara-instruction-004-001](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset |
128
+ | |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety |
129
+ | |[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL |
130
+ | |[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) translated into Japanese using DeepL |
131
+ | |[oasst2-33k-ja](https://huggingface.co/datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) translated into Japanese using DeepL |
132
+ |English |[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) |
133
+ | |[oasst2-33k-en](https://huggingface.co/datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) |
134
+
135
+ ## Evaluation
136
+
137
+ You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) (v1.3.0) for the evaluation.
138
+
139
+ Besides, we used LLM-as-a-judge frameworks, [Japanese Vicuna QA Benchmark](https://github.com/ku-nlp/ja-vicuna-qa-benchmark/) and [Japanese MT Bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge), for evaluation.
140
+ For details, please refer to [our technical blog](https://llm-jp.nii.ac.jp/blog/2024/04/30/v2.0-release.html) (in Japanese).
141
+
142
+ ## Risks and Limitations
143
+
144
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
145
+
146
+
147
+ ## Send Questions to
148
+
149
+ llm-jp(at)nii.ac.jp
150
+
151
+
152
+ ## License
153
+
154
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
155
+
156
+
157
+ ## Model Card Authors
158
+
159
+ *The names are listed in alphabetical order.*
160
+
161
+ Namgi Han, Tatsuya Hiraoka, Hirokazu Kiyomaru, Takashi Kodama, and Hiroshi Matsuda.