File size: 15,027 Bytes
75b7a2d
 
2ca8ba0
 
 
 
 
ecdcb56
75b7a2d
a7edd71
90b8f4f
a7edd71
86f84ff
90b8f4f
a7edd71
86f84ff
a7edd71
86f84ff
a7edd71
86f84ff
 
 
 
 
 
 
a7edd71
86f84ff
 
 
 
 
 
 
 
a7edd71
86f84ff
a7edd71
86f84ff
 
69792a3
86f84ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b966782
 
 
86f84ff
 
 
 
 
 
 
 
 
 
 
17bc9e6
86f84ff
 
ac83cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7edd71
 
 
 
 
 
69792a3
48b3d1a
a7edd71
 
 
 
48b3d1a
a7edd71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714a42b
a7edd71
 
 
69792a3
a7edd71
 
69792a3
 
 
 
 
 
 
 
 
 
a7edd71
 
 
 
 
 
 
 
 
 
69792a3
a7edd71
69792a3
b966782
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
license: openrail
base_model: runwayml/stable-diffusion-v1-5
tags:
- art
- controlnet
- stable-diffusion
- image-to-image
---

# Controlnet - *Image Segmentation Version*

ControlNet is a neural network structure to control diffusion models by adding extra conditions. 
This checkpoint corresponds to the ControlNet conditioned on **Image Segmentation**.

It can be used in combination with [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img).

![img](./sd.png)

## Model Details
- **Developed by:** Lvmin Zhang, Maneesh Agrawala
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
- **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543).
- **Cite as:**

  @misc{zhang2023adding,
    title={Adding Conditional Control to Text-to-Image Diffusion Models}, 
    author={Lvmin Zhang and Maneesh Agrawala},
    year={2023},
    eprint={2302.05543},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
  }

## Introduction

Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by 
Lvmin Zhang, Maneesh Agrawala.

The abstract reads as follows:

*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. 
The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). 
Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. 
Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. 
We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. 
This may enrich the methods to control large diffusion models and further facilitate related applications.*

## Released Checkpoints

The authors released 8 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) 
on a different type of conditioning:

| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|---|---|---|---|
|[lllyasviel/sd-controlnet-canny](https://huggingface.co/lllyasviel/sd-controlnet-canny)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_canny.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_canny.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"/></a>|
|[lllyasviel/sd-controlnet-depth](https://huggingface.co/lllyasviel/sd-controlnet-depth)<br/> *Trained with Midas depth estimation*  |A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_depth.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_depth.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"/></a>|
|[lllyasviel/sd-controlnet-hed](https://huggingface.co/lllyasviel/sd-controlnet-hed)<br/> *Trained with HED edge detection (soft edge)*  |A monochrome image with white soft edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_hed.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_hed.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"/></a> |
|[lllyasviel/sd-controlnet-mlsd](https://huggingface.co/lllyasviel/sd-controlnet-mlsd)<br/> *Trained with M-LSD line detection*  |A monochrome image composed only of white straight lines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_mlsd.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_mlsd.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"/></a>|
|[lllyasviel/sd-controlnet-normal](https://huggingface.co/lllyasviel/sd-controlnet-normal)<br/> *Trained with normal map*  |A [normal mapped](https://en.wikipedia.org/wiki/Normal_mapping) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_normal.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_normal.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"/></a>|
|[lllyasviel/sd-controlnet_openpose](https://huggingface.co/lllyasviel/sd-controlnet-openpose)<br/> *Trained with OpenPose bone image*  |A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_openpose.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"/></a>|
|[lllyasviel/sd-controlnet_scribble](https://huggingface.co/lllyasviel/sd-controlnet-scribble)<br/> *Trained with human scribbles*  |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> |
|[lllyasviel/sd-controlnet_seg](https://huggingface.co/lllyasviel/sd-controlnet-seg)<br/>*Trained with semantic segmentation*  |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |


## Example

It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint 
has been trained on it.
Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion.

1. Let's install `diffusers` and related packages:

```
$ pip install diffusers transformers accelerate
```

2. We'll need to make use of a color palette here as described in [semantic_segmentation](https://huggingface.co/docs/transformers/tasks/semantic_segmentation):

```py
palette = np.asarray([
    [0, 0, 0],
    [120, 120, 120],
    [180, 120, 120],
    [6, 230, 230],
    [80, 50, 50],
    [4, 200, 3],
    [120, 120, 80],
    [140, 140, 140],
    [204, 5, 255],
    [230, 230, 230],
    [4, 250, 7],
    [224, 5, 255],
    [235, 255, 7],
    [150, 5, 61],
    [120, 120, 70],
    [8, 255, 51],
    [255, 6, 82],
    [143, 255, 140],
    [204, 255, 4],
    [255, 51, 7],
    [204, 70, 3],
    [0, 102, 200],
    [61, 230, 250],
    [255, 6, 51],
    [11, 102, 255],
    [255, 7, 71],
    [255, 9, 224],
    [9, 7, 230],
    [220, 220, 220],
    [255, 9, 92],
    [112, 9, 255],
    [8, 255, 214],
    [7, 255, 224],
    [255, 184, 6],
    [10, 255, 71],
    [255, 41, 10],
    [7, 255, 255],
    [224, 255, 8],
    [102, 8, 255],
    [255, 61, 6],
    [255, 194, 7],
    [255, 122, 8],
    [0, 255, 20],
    [255, 8, 41],
    [255, 5, 153],
    [6, 51, 255],
    [235, 12, 255],
    [160, 150, 20],
    [0, 163, 255],
    [140, 140, 140],
    [250, 10, 15],
    [20, 255, 0],
    [31, 255, 0],
    [255, 31, 0],
    [255, 224, 0],
    [153, 255, 0],
    [0, 0, 255],
    [255, 71, 0],
    [0, 235, 255],
    [0, 173, 255],
    [31, 0, 255],
    [11, 200, 200],
    [255, 82, 0],
    [0, 255, 245],
    [0, 61, 255],
    [0, 255, 112],
    [0, 255, 133],
    [255, 0, 0],
    [255, 163, 0],
    [255, 102, 0],
    [194, 255, 0],
    [0, 143, 255],
    [51, 255, 0],
    [0, 82, 255],
    [0, 255, 41],
    [0, 255, 173],
    [10, 0, 255],
    [173, 255, 0],
    [0, 255, 153],
    [255, 92, 0],
    [255, 0, 255],
    [255, 0, 245],
    [255, 0, 102],
    [255, 173, 0],
    [255, 0, 20],
    [255, 184, 184],
    [0, 31, 255],
    [0, 255, 61],
    [0, 71, 255],
    [255, 0, 204],
    [0, 255, 194],
    [0, 255, 82],
    [0, 10, 255],
    [0, 112, 255],
    [51, 0, 255],
    [0, 194, 255],
    [0, 122, 255],
    [0, 255, 163],
    [255, 153, 0],
    [0, 255, 10],
    [255, 112, 0],
    [143, 255, 0],
    [82, 0, 255],
    [163, 255, 0],
    [255, 235, 0],
    [8, 184, 170],
    [133, 0, 255],
    [0, 255, 92],
    [184, 0, 255],
    [255, 0, 31],
    [0, 184, 255],
    [0, 214, 255],
    [255, 0, 112],
    [92, 255, 0],
    [0, 224, 255],
    [112, 224, 255],
    [70, 184, 160],
    [163, 0, 255],
    [153, 0, 255],
    [71, 255, 0],
    [255, 0, 163],
    [255, 204, 0],
    [255, 0, 143],
    [0, 255, 235],
    [133, 255, 0],
    [255, 0, 235],
    [245, 0, 255],
    [255, 0, 122],
    [255, 245, 0],
    [10, 190, 212],
    [214, 255, 0],
    [0, 204, 255],
    [20, 0, 255],
    [255, 255, 0],
    [0, 153, 255],
    [0, 41, 255],
    [0, 255, 204],
    [41, 0, 255],
    [41, 255, 0],
    [173, 0, 255],
    [0, 245, 255],
    [71, 0, 255],
    [122, 0, 255],
    [0, 255, 184],
    [0, 92, 255],
    [184, 255, 0],
    [0, 133, 255],
    [255, 214, 0],
    [25, 194, 194],
    [102, 255, 0],
    [92, 0, 255],
])
```

3. Having defined the color palette we can now run the whole segmentation + controlnet generation code:

```py
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from PIL import Image
import numpy as np
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image

image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")

image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-seg/resolve/main/images/house.png").convert('RGB')

pixel_values = image_processor(image, return_tensors="pt").pixel_values

with torch.no_grad():
  outputs = image_segmentor(pixel_values)

seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]

color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3

for label, color in enumerate(palette):
    color_seg[seg == label, :] = color

color_seg = color_seg.astype(np.uint8)

image = Image.fromarray(color_seg)

controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# Remove if you do not have xformers installed
# see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers
# for installation instructions
pipe.enable_xformers_memory_efficient_attention()

pipe.enable_model_cpu_offload()

image = pipe("house", image, num_inference_steps=20).images[0]

image.save('./images/house_seg_out.png')
```

![house](images/house.png)

![house_seg](images/house_seg.png)

![house_seg_out](images/house_seg_out.png)

### Training

The semantic segmentation model was trained on 164K segmentation-image, caption pairs from ADE20K. The model was trained for 200 GPU-hours with Nvidia A100 80G using Stable Diffusion 1.5 as a base model.

### Blog post

For more information, please also have a look at the [official ControlNet Blog Post](https://huggingface.co/blog/controlnet).