File size: 5,046 Bytes
bfa3116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from datasets import load_dataset
import pandas as pd
import fasttext
import numpy as np
from sklearn.model_selection import train_test_split
from tqdm.auto import tqdm, trange
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import mean_squared_error
import requests
import gzip
import shutil
import os
from safetensors.torch import save_model
import matplotlib.pyplot as plt

class FasttextEmbedRegressor(nn.Module):
    def __init__(self, input_size=300):
        super(FasttextEmbedRegressor, self).__init__()
        layer_1_size = 64
        layer_2_size = 32
        self.fc1 = nn.Linear(input_size, layer_1_size)
        self.fc2 = nn.Linear(layer_1_size, layer_2_size)
        self.fc3 = nn.Linear(layer_2_size, 1)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

def train_regressor(X_train, X_test, y_train, y_test, train_epochs):

    # Initialize the model, loss function, and optimizer
    input_size = X_train.shape[1]
    model = FasttextEmbedRegressor(input_size)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    batch_size = 32

    training_metrics = []

    for epoch in trange(train_epochs):
        model.train()
        train_losses = []
        for step_num, i in enumerate(trange(0, X_train.shape[0], batch_size)):
            vectors = torch.Tensor(X_train[i:i+batch_size])
            targets = torch.Tensor(y_train[i:i+batch_size])
            optimizer.zero_grad()
            outputs = model(vectors).squeeze()
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            train_losses.append(float(loss))
            if step_num % 10 == 0:
                model.eval()
                test_preds = model(torch.Tensor(X_test)).detach().numpy()
                test_mse = mean_squared_error(y_test, test_preds)
                training_metrics.append({
                    "epoch": epoch,
                    "step_num": step_num,
                    "i": i,
                    "test_mse": test_mse,
                    "train_loss": sum(train_losses) / len(train_losses),
                })
                train_losses = []
                model.train()

    return pd.DataFrame(training_metrics), model

def download_file(url, filename):
    """
    Helper method handling downloading large files from `url` to `filename`. Returns a pointer to `filename`.
    """
    chunkSize = 1024
    r = requests.get(url, stream=True)
    with open(filename, 'wb') as f:
        pbar = tqdm( unit="B", total=int( r.headers['Content-Length'] ) )
        for chunk in r.iter_content(chunk_size=chunkSize): 
            if chunk: # filter out keep-alive new chunks
                pbar.update (len(chunk))
                f.write(chunk)
    return filename

get_filename = lambda x: f"cc.{x}.300.bin"

def download_fasttext_vectors(lang_code):
    filename = get_filename(lang_code)

    if os.path.isfile(filename):
        return None

    print(f"Downloading {lang_code} vectors")
    download_file(f"https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/{filename}.gz", f"{filename}.gz")

    print(f"Unzipping {lang_code} vectors")
    with gzip.open(f"{filename}.gz", 'rb') as f_in:
        with open(filename, 'wb') as f_out:
            shutil.copyfileobj(f_in, f_out)

    print(f"Removing zipped {lang_code} vectors")
    os.remove(f"{filename}.gz")
    
    return True

def create_quality_eval_model(lang_code, train_epochs=10):

    download_fasttext_vectors(lang_code)

    dataset = load_dataset("lightblue/text_ratings", lang_code, split="train")
    text_list = dataset["selected_chunk"]
    label_float = [x / 100 for x in dataset["rating_float"]]

    fasttext_model = fasttext.load_model(f"cc.{lang_code}.300.bin")

    embeddings = np.stack([fasttext_model.get_sentence_vector(
        x.replace("\n", " ")
        ) for x in tqdm(text_list)])

    X_train, X_test, y_train, y_test, text_train, text_test = train_test_split(
            embeddings,
            label_float,
            text_list,
            test_size=0.2,
            random_state=42
    )

    metrics_df, model = train_regressor(X_train, X_test, y_train, y_test, train_epochs)

    test_df = pd.DataFrame({
        "text": text_test, 
        "gold_score": y_test, 
        "pred_score": model(torch.Tensor(X_test)).detach().numpy().flatten()
    })

    save_model(model, f"{lang_code}.safetensors")

    os.remove(get_filename(lang_code))

    return metrics_df, test_df

if __name__ == '__main__':

    langs = ['am', 'ar', 'bg', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fr', 'gu', 'ha', 'hi', 'hu', 'id', 'it', 'ja', 'jv', 'kn', 'ko', 'lt', 'mr', 'nl', 'no', 'yo', 'zh']
    
    for l in langs:
        print(l)
        metrics_df, test_df = create_quality_eval_model(l, train_epochs=5)
        print(l)
        metrics_df[["test_mse", "train_loss"]].rolling(50).mean().plot()
        plt.show()